Suppr超能文献

离散化蝴蝶优化算法在近红外光谱快速测定胆固醇中的变量选择。

Discretized butterfly optimization algorithm for variable selection in the rapid determination of cholesterol by near-infrared spectroscopy.

机构信息

State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China.

Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co. Ltd., Binzhou 256500, China.

出版信息

Anal Methods. 2023 Oct 12;15(39):5190-5198. doi: 10.1039/d3ay01636f.

Abstract

The blood cholesterol level is strongly associated with cardiovascular disease. It is necessary to develop a rapid method to determine the cholesterol concentration of blood. In this study, a discretized butterfly optimization algorithm-partial least squares (BOA-PLS) method combined with near-infrared (NIR) spectroscopy is firstly proposed for rapid determination of the cholesterol concentration in blood. In discretized BOA, the butterfly vector is described by 1 or 0, which represents whether the variable is selected or not, respectively. In the optimization process, four transfer functions, , arctangent, V-shaped, improved arctangent (I-atan) and improved V-shaped (I-V), are introduced and compared for discretization of the butterfly position. The partial least squares (PLS) model is established between the selected NIR variables and cholesterol concentrations. The iteration number, transfer functions and the performance of butterflies are investigated. The proposed method is compared with full-spectrum PLS, multiplicative scatter correction-PLS (MSC-PLS), max-min scaling-PLS (MMS-PLS), MSC-MMS-PLS, uninformative variable elimination-PLS (UVE-PLS), Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). Results show that the I-V function is the best transfer function for discretization. Both preprocessing and variable selection can improve the prediction performance of PLS. Variable selection methods based on BOA are better than those based on statistics. Furthermore, I-V-BOA-PLS has the highest predictive accuracy among the seven variable selection methods. MSC-MMS can further improve the prediction ability of I-V-BOA-PLS. Therefore, BOA-PLS combined with NIR spectroscopy is promising for the rapid determination of cholesterol concentration in blood.

摘要

血液胆固醇水平与心血管疾病密切相关。因此,有必要开发一种快速测定血液胆固醇浓度的方法。本研究首次提出了一种离散化蝴蝶优化算法-偏最小二乘法(BOA-PLS)结合近红外(NIR)光谱法,用于快速测定血液中的胆固醇浓度。在离散化的 BOA 中,蝴蝶向量由 1 或 0 表示,分别代表变量是否被选择。在优化过程中,引入并比较了四种传递函数,即反正切、V 型、改进的反正切(I-atan)和改进的 V 型(I-V),用于蝴蝶位置的离散化。在所选 NIR 变量和胆固醇浓度之间建立偏最小二乘(PLS)模型。研究了迭代次数、传递函数和蝴蝶的性能。将所提出的方法与全谱 PLS、乘性散射校正偏最小二乘(MSC-PLS)、最大-最小缩放偏最小二乘(MMS-PLS)、MSC-MMS-PLS、无信息变量消除偏最小二乘(UVE-PLS)、蒙特卡罗无信息变量消除偏最小二乘(MCUVE-PLS)和随机化检验偏最小二乘(RT-PLS)进行比较。结果表明,I-V 函数是离散化的最佳传递函数。预处理和变量选择都可以提高 PLS 的预测性能。基于 BOA 的变量选择方法优于基于统计学的变量选择方法。此外,I-V-BOA-PLS 是七种变量选择方法中预测精度最高的方法。MSC-MMS 可以进一步提高 I-V-BOA-PLS 的预测能力。因此,BOA-PLS 结合 NIR 光谱法有望用于快速测定血液中的胆固醇浓度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验