Macis Salvatore, Paolozzi Maria Chiara, D'Arco Annalisa, Piccirilli Federica, Stopponi Veronica, Rossi Marco, Moia Fabio, Toma Andrea, Lupi Stefano
Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
INFN - Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044, Frascati, Rome, Italy.
Nanoscale. 2023 Oct 12;15(39):16002-16009. doi: 10.1039/d3nr02834h.
Metamaterials are attracting increasing attention due to their ability to support novel and engineerable electromagnetic functionalities. In this paper, we investigate one of these functionalities, the extraordinary optical transmittance (EOT) effect based on silicon nitride (SiN) membranes patterned with a periodic lattice of micrometric holes. Here, the coupling between the incoming electromagnetic wave and a SiN optical phonon located around 900 cm triggers an increase of the transmitted infrared intensity in an otherwise opaque spectral region. Different hole sizes are investigated suggesting that the mediating mechanism responsible for this phenomenon is the excitation of a phonon-polariton mode. The electric field distribution around the holes is further investigated by numerical simulations and nano-IR measurements based on a Scattering-Scanning Near Field Microscope (s-SNOM) technique, confirming the phonon-polariton origin of the EOT effect. Being membrane technologies at the core of a broad range of applications, the confinement of IR radiation at the membrane surface provides this technology platform with a novel light-matter interaction functionality.
超材料因其能够支持新颖且可设计的电磁功能而受到越来越多的关注。在本文中,我们研究其中一种功能,即基于具有微米级孔洞周期性晶格图案的氮化硅(SiN)薄膜的超常光学透射率(EOT)效应。在此,入射电磁波与位于约900厘米-1附近的SiN光学声子之间的耦合,在原本不透明的光谱区域引发了透射红外强度的增加。研究了不同的孔洞尺寸,表明导致这种现象的介导机制是声子极化激元模式的激发。通过基于散射扫描近场显微镜(s-SNOM)技术的数值模拟和纳米红外测量,进一步研究了孔洞周围的电场分布,证实了EOT效应的声子极化激元起源。由于薄膜技术是广泛应用的核心,红外辐射在薄膜表面的限制为该技术平台提供了一种新型的光与物质相互作用功能。