Suppr超能文献

迈向大气中大型硫酸 - 氨团簇生长的建模

Toward Modeling the Growth of Large Atmospheric Sulfuric Acid-Ammonia Clusters.

作者信息

Engsvang Morten, Kubečka Jakub, Elm Jonas

机构信息

Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

Department of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

出版信息

ACS Omega. 2023 Sep 14;8(38):34597-34609. doi: 10.1021/acsomega.3c03521. eCollection 2023 Sep 26.

Abstract

Studying large atmospheric molecular clusters is needed to understand the transition between clusters and aerosol particles. In this work, we studied the (SA)(AM) clusters with up to 30 and the (SA)(AM) clusters, with = 6-20. The cluster configurations are sampled using the ABCluster program, and the cluster geometries and thermochemical parameters are calculated using GFN1-xTB. The cluster binding energies are calculated using B97-3c. We find that the addition of sulfuric acid is preferred to the addition of ammonia. The addition free energies were found to have large uncertainties, which could potentially be attributed to errors in the applied level of theory. Based on DLPNO-CCSD(T)/aug-cc-pVTZ benchmarks of the binding energies of the large (SA)(AM) and (SA)(AM) clusters, we find that ωB97X-D3BJ with a large basis set is required to yield accurate binding and addition energies. However, based on recalculations of the single-point energy at rSCAN-3c and ωB97X-D3BJ/6-311++G(3df,3pd), we show that the single-point energy contribution is not the primary source of error. We hypothesize that a larger source of error might be present in the form of insufficient configurational sampling. Finally, we train Δ machine learning model on (SA)(AM) clusters with up to 5 and show that we can predict the binding energies of clusters up to sizes of (SA)(AM) with a binding energy error below 0.6 %. This is an encouraging approach for accurately modeling the binding energies of large acid-base clusters in the future.

摘要

为了理解团簇和气溶胶颗粒之间的转变,需要研究大气中的大分子团簇。在这项工作中,我们研究了多达30个(SA)(AM)团簇以及 = 6 - 20的(SA)(AM)团簇。使用ABCluster程序对团簇构型进行采样,并使用GFN1-xTB计算团簇几何结构和热化学参数。使用B97-3c计算团簇结合能。我们发现添加硫酸比添加氨更可取。发现添加自由能具有很大的不确定性,这可能归因于所应用理论水平的误差。基于大(SA)(AM)和(SA)(AM)团簇结合能的DLPNO-CCSD(T)/aug-cc-pVTZ基准,我们发现需要使用大基组的ωB97X-D3BJ来产生准确的结合能和添加能。然而,基于在rSCAN-3c和ωB97X-D3BJ/6-311++G(3df,3pd)下的单点能量重新计算,我们表明单点能量贡献不是误差的主要来源。我们假设更大的误差来源可能以构型采样不足的形式存在。最后,我们在多达5个的(SA)(AM)团簇上训练Δ机器学习模型,并表明我们可以预测大小为(SA)(AM)的团簇的结合能,结合能误差低于0.6%。这是一种在未来准确模拟大酸碱团簇结合能的令人鼓舞的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0e6/10536041/a2bce902342c/ao3c03521_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验