Liu Li, Zhang Hanhan, Wu Lin, Gu Shangfeng, Xu Jing, Jia Bing, Ye Zhenfeng, Heng Wei, Jin Xiu
School of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
School of Information and Computer Science, Anhui Agriculture University, 130 Changjiang West Road, Hefei 230036, China.
Food Chem X. 2023 Sep 5;19:100851. doi: 10.1016/j.fochx.2023.100851. eCollection 2023 Oct 30.
The early symptoms of cork spot disorder in 'Akizuki' pear ( Nakai) are challenging to distinguish from those in healthy fruits, hindering early identification in production. In this study, samples of cork-browned 'Akizuki' pears, asymptomatic fruits and healthy fruits were examined to determine the content of relevant mineral elements. A micro near-infrared spectrometer collected spectral information, and various pretreatment methods were applied to the near-infrared spectral data. Support vector machine (SVM) modelling using the original data achieved the highest overall recognition accuracy of 84.65% and an F1 value of 84.06%. For identifying fruits without cork spot disease, Autokeras modelled data processed with the SG method, achieving the best accuracy of 90%. These findings establish a reliable basis for the early identification and diagnosis of cork spot disorder in 'Akizuki' pear, enhancing pear production management.
秋月梨(中井) cork spot disorder 的早期症状很难与健康果实的症状区分开来,这阻碍了生产中的早期识别。在本研究中,对 cork-browned 秋月梨、无症状果实和健康果实的样本进行了检测,以确定相关矿质元素的含量。微型近红外光谱仪收集光谱信息,并对近红外光谱数据应用了各种预处理方法。使用原始数据的支持向量机(SVM)建模实现了最高的总体识别准确率 84.65%和 F1 值 84.06%。对于识别无 cork spot 病的果实,使用 SG 方法处理的 Autokeras 建模数据达到了最佳准确率 90%。这些发现为秋月梨 cork spot disorder 的早期识别和诊断奠定了可靠基础,加强了梨生产管理。