Suppr超能文献

利用弹性图像配准的限制光谱成像对乳腺癌新辅助治疗反应进行自动评估

Restriction spectrum imaging with elastic image registration for automated evaluation of response to neoadjuvant therapy in breast cancer.

作者信息

Andreassen Maren M Sjaastad, Loubrie Stephane, Tong Michelle W, Fang Lauren, Seibert Tyler M, Wallace Anne M, Zare Somaye, Ojeda-Fournier Haydee, Kuperman Joshua, Hahn Michael, Jerome Neil P, Bathen Tone F, Rodríguez-Soto Ana E, Dale Anders M, Rakow-Penner Rebecca

机构信息

Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.

Department of Oncology, Vestre Viken, Drammen, Norway.

出版信息

Front Oncol. 2023 Sep 15;13:1237720. doi: 10.3389/fonc.2023.1237720. eCollection 2023.

Abstract

PURPOSE

Dynamic contrast-enhanced MRI (DCE) and apparent diffusion coefficient (ADC) are currently used to evaluate treatment response of breast cancer. The purpose of the current study was to evaluate the three-component Restriction Spectrum Imaging model (RSI), a recent diffusion-weighted MRI (DWI)-based tumor classification method, combined with elastic image registration, to automatically monitor breast tumor size throughout neoadjuvant therapy.

EXPERIMENTAL DESIGN

Breast cancer patients (27) underwent multi-parametric 3T MRI at four time points during treatment. Elastically-registered DWI images were used to generate an automatic RSI response classifier, assessed against manual DCE tumor size measurements and mean ADC values. Predictions of therapy response during treatment and residual tumor post-treatment were assessed using non-pathological complete response (non-pCR) as an endpoint.

RESULTS

Ten patients experienced pCR. Prediction of non-pCR using ROC AUC (95% CI) for change in measured tumor size from pre-treatment time point to early-treatment time point was 0.65 (0.38-0.92) for the RSI classifier, 0.64 (0.36-0.91) for DCE, and 0.45 (0.16-0.75) for change in mean ADC. Sensitivity for detection of residual disease post-treatment was 0.71 (0.44-0.90) for the RSI classifier, compared to 0.88 (0.64-0.99) for DCE and 0.76 (0.50-0.93) for ADC. Specificity was 0.90 (0.56-1.00) for the RSI classifier, 0.70 (0.35-0.93) for DCE, and 0.50 (0.19-0.81) for ADC.

CONCLUSION

The automatic RSI classifier with elastic image registration suggested prediction of response to treatment after only three weeks, and showed performance comparable to DCE for assessment of residual tumor post-therapy. RSI may guide clinical decision-making and enable tailored treatment regimens and cost-efficient evaluation of neoadjuvant therapy of breast cancer.

摘要

目的

动态对比增强磁共振成像(DCE)和表观扩散系数(ADC)目前用于评估乳腺癌的治疗反应。本研究的目的是评估三分量限制谱成像模型(RSI),一种基于扩散加权磁共振成像(DWI)的肿瘤分类新方法,结合弹性图像配准,以在新辅助治疗期间自动监测乳腺肿瘤大小。

实验设计

27例乳腺癌患者在治疗期间的四个时间点接受了多参数3T磁共振成像检查。使用弹性配准的DWI图像生成自动RSI反应分类器,并与手动DCE肿瘤大小测量值和平均ADC值进行比较评估。以非病理完全缓解(非pCR)作为终点,评估治疗期间治疗反应和治疗后残留肿瘤的预测情况。

结果

10例患者实现了pCR。对于从治疗前时间点到治疗早期时间点测量的肿瘤大小变化,使用RSI分类器的ROC曲线下面积(95%CI)预测非pCR为0.65(0.38 - 0.92),DCE为0.64(0.36 - 0.91),平均ADC变化为0.45(0.16 - 0.75)。治疗后检测残留疾病的敏感度,RSI分类器为0.71(0.44 - 0.90),DCE为0.88(0.64 - 0.99),ADC为0.76(0.50 - 0.93)。特异性方面,RSI分类器为0.90(0.56 - 1.00),DCE为0.70(0.35 - 0.93),ADC为0.50(0.19 - 0.81)。

结论

结合弹性图像配准的自动RSI分类器表明仅在三周后就能预测治疗反应,并且在评估治疗后残留肿瘤方面表现与DCE相当。RSI可能指导临床决策,并有助于制定个性化治疗方案以及对乳腺癌新辅助治疗进行成本效益评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d3f/10541212/15e62384907f/fonc-13-1237720-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验