Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Radiology, University of California San Diego, La Jolla, California.
Clin Cancer Res. 2021 Feb 15;27(4):1094-1104. doi: 10.1158/1078-0432.CCR-20-2017. Epub 2020 Nov 4.
Diffusion-weighted MRI (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between predefined benign and malignant breast lesions. However, how well DW-MRI discriminates cancer from all other breast tissue voxels in a clinical setting is unknown. Here we explore the voxelwise ability to distinguish cancer from healthy breast tissue using signal contributions from the newly developed three-component multi-b-value DW-MRI model.
Patients with pathology-proven breast cancer from two datasets ( = 81 and = 25) underwent multi-b-value DW-MRI. The three-component signal contributions and and their product, , and signal fractions , , and were compared with the image defined on maximum b-value ( ), conventional apparent diffusion coefficient (), and apparent diffusion kurtosis ( ). The ability to discriminate between cancer and healthy breast tissue was assessed by the false-positive rate given a sensitivity of 80% (FPR) and ROC AUC.
Mean FPR for both datasets was 0.016 [95% confidence interval (CI), 0.008-0.024] for , 0.136 (95% CI, 0.092-0.180) for , 0.068 (95% CI, 0.049-0.087) for , 0.462 (95% CI, 0.425-0.499) for , 0.832 (95% CI, 0.797-0.868) for , 0.176 (95% CI, 0.150-0.203) for , 0.159 (95% CI, 0.114-0.204) for , 0.731 (95% CI, 0.692-0.770) for , and 0.684 (95% CI, 0.660-0.709) for . Mean ROC AUC for was 0.984 (95% CI, 0.977-0.991).
The parameter of the three-component model yields a clinically useful discrimination between cancer and healthy breast tissue, superior to other DW-MRI methods and obliviating predefining lesions. This novel DW-MRI method may serve as noncontrast alternative to standard-of-care dynamic contrast-enhanced MRI.
扩散加权磁共振成像(DW-MRI)是一种无对比剂的模态,可以证明其能够区分预先定义的良性和恶性乳腺病变。然而,在临床环境中,DW-MRI 区分癌症与所有其他乳腺组织体素的能力尚不清楚。在这里,我们使用新开发的三分量多 b 值 DW-MRI 模型的信号贡献来探索区分癌症与健康乳腺组织的体素能力。
来自两个数据集的病理证实的乳腺癌患者(=81 和=25)接受了多 b 值 DW-MRI。比较了三分量信号贡献、、及其乘积、、以及信号分数、、和、、与图像定义的最大 b 值()、传统表观扩散系数()和表观扩散峰度()。通过给定 80%的灵敏度的假阳性率(FPR)和 ROC AUC 来评估区分癌症与健康乳腺组织的能力。
两个数据集的平均 FPR 分别为 0.016[95%置信区间(CI),0.008-0.024]、0.136(95%CI,0.092-0.180)、0.068(95%CI,0.049-0.087)、0.462(95%CI,0.425-0.499)、0.832(95%CI,0.797-0.868)、0.176(95%CI,0.150-0.203)、0.159(95%CI,0.114-0.204)、0.731(95%CI,0.692-0.770)、0.684(95%CI,0.660-0.709)。平均 ROC AUC 为 0.984(95%CI,0.977-0.991)。
三分量模型的参数可以在临床中有效区分癌症与健康乳腺组织,优于其他 DW-MRI 方法,并且无需预先定义病变。这种新的 DW-MRI 方法可能是标准护理动态对比增强 MRI 的非对比替代方法。