Schneider Ludwig, de Pablo Juan J
Pritzker School of Molecular Engineering, University of Chicago, 5740 S. Ellis Avenue, Chicago, Illinois 60637-1403, United States.
Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, United States.
Macromolecules. 2023 Sep 1;56(18):7445-7453. doi: 10.1021/acs.macromol.3c00960. eCollection 2023 Sep 26.
Recent advances in nano-rheology require that new techniques and models be developed to precisely describe the equilibrium and non-equilibrium characteristics of entangled polymeric materials and their interfaces at a molecular level. In this study, a slip-spring (SLSP) model is proposed to capture the dynamics of entangled polymers at interfaces, including those between liquids, liquids and vapors, and liquids and solids. The SLSP model employs a highly coarse-grained approach, which allows for comprehensive simulations of entire nano-rheological characterization systems using a particle-level description. The model relies on many-body dissipative particle dynamics (MDPD) non-bonded interactions, which permit explicit description of liquid-vapor interfaces; a compensating potential is introduced to ensure an unbiased representation of the shape of the liquid-vapor interface within the SLSP model. The usefulness of the proposed MDPD + SLSP approach is illustrated by simulating a capillary breakup rheometer (CaBR) experiment, in which a liquid droplet splits into two segments under the influence of capillary forces. We find that the predictions of the MDPD + SLSP model are consistent with experimental measurements and theoretical predictions. The proposed model is also verified by comparison to the results of explicit molecular dynamics simulations of an entangled polymer melt using a Kremer-Grest chain representation, both at equilibrium and far from equilibrium. Taken together, the model and methods presented in this study provide a reliable framework for molecular-level interpretation of high-polymer dynamics in the presence of interfaces.
纳米流变学的最新进展要求开发新技术和模型,以在分子水平上精确描述缠结聚合物材料及其界面的平衡和非平衡特性。在本研究中,提出了一种滑移弹簧(SLSP)模型来捕捉界面处缠结聚合物的动力学,包括液体之间、液体与蒸汽之间以及液体与固体之间的界面。SLSP模型采用了高度粗粒度的方法,允许使用粒子级描述对整个纳米流变学表征系统进行全面模拟。该模型依赖于多体耗散粒子动力学(MDPD)非键相互作用,这种相互作用允许对液-气界面进行明确描述;引入了一个补偿势,以确保在SLSP模型中对液-气界面形状进行无偏表征。通过模拟毛细管破裂流变仪(CaBR)实验说明了所提出的MDPD+SLSP方法的有效性,在该实验中,液滴在毛细力的影响下分裂成两段。我们发现,MDPD+SLSP模型的预测与实验测量和理论预测一致。通过与使用Kremer-Grest链表示的缠结聚合物熔体在平衡态和远离平衡态的显式分子动力学模拟结果进行比较,也验证了所提出的模型。综上所述,本研究中提出的模型和方法为在存在界面的情况下对高聚物动力学进行分子水平解释提供了一个可靠的框架。