Institute for Theoretical Physics, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
Pritzker School of Molecular Engineering, University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637, United States.
J Phys Chem B. 2022 Sep 8;126(35):6725-6739. doi: 10.1021/acs.jpcb.2c03983. Epub 2022 Aug 29.
Highly coarse-grained (hCG) linear polymer models allow for accessing long time and length scales by dissipative particle dynamics (DPD). This top-down strategy exploits the universal equilibrium behavior of long, flexible macromolecules by accounting only for the relevant interactions, such as molecular connectivity, and by parametrizing their strength via coarse-grained invariants, such as the mean-squared end-to-end distance. The description of the dynamics of long, entangled polymers, however, poses a challenge because (i) the noncrossability of the molecular backbones is not enforced by the soft interactions of an hCG model and (ii) the rheology involves multiple time and length scales, such as the Rouse-like dynamics on short scales and the reptation dynamics on long scales. One popular technique to effectively mimic the effect of entanglements in linear polymer melts via hCG models is slip-springs, and quantitative agreement with simulations that explicitly account for the noncrossability of molecular contours, experiments, and theoretical predictions has been achieved by identifying the time, length, and energy scales of the hCG model and adjusting the number of slip-springs per macromolecule. In the present work, we study how the spatial extent and the mobility of slip-springs affect the dynamics and discuss their implications in the choice of the degree of coarse-graining in computationally efficient hCG models.
高度粗粒化(hCG)线性聚合物模型通过耗散粒子动力学(DPD)允许访问长的时间和长度尺度。这种自顶向下的策略通过仅考虑相关相互作用,例如分子连接性,并通过参数化其强度来利用长而灵活的大分子的通用平衡行为,例如均方末端到末端的距离。然而,长的缠结聚合物的动力学描述提出了一个挑战,因为 (i) hCG 模型的软相互作用不会强制分子骨架的不可穿越性,以及 (ii) 流变学涉及多个时间和长度尺度,例如短尺度上的类似 Rouse 的动力学和长尺度上的蠕动动力学。一种通过 hCG 模型有效地模拟线性聚合物熔体中缠结效应的流行技术是滑动弹簧,并且通过识别 hCG 模型的时间、长度和能量尺度并调整每个大分子的滑动弹簧数量,与明确考虑分子轮廓不可穿越性的模拟、实验和理论预测实现了定量一致。在本工作中,我们研究了滑动弹簧的空间范围和迁移率如何影响动力学,并讨论了它们在计算效率高的 hCG 模型中粗粒化程度选择中的影响。