Suppr超能文献

使用简化图的线性组合构建多分类器系统。

Building Multiple Classifier Systems Using Linear Combinations of Reduced Graphs.

作者信息

Gillioz Anthony, Riesen Kaspar

机构信息

Institute of Computer Science, University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland.

Institute for Informations Systems, University of Appl. Sci. and Arts Northwestern Switzerland, 4600 Olten, Switzerland.

出版信息

SN Comput Sci. 2023;4(6):743. doi: 10.1007/s42979-023-02194-1. Epub 2023 Sep 27.

Abstract

Despite great efforts done in research in the last decades, the classification of general graphs, i.e., graphs with unconstrained labeling and structure, remains a challenging task. Due to the inherent relational structure of graphs it is difficult, or even impossible, to apply standard pattern recognition methods to graphs to achieve high recognition accuracies. Common methods to solve the non-trivial problem of graph classification employ graph matching in conjunction with a distance-based classifier or a kernel machine. In the present paper, we address the specific task of graph classification by means of a novel framework that uses information acquired from a broad range of reduced graph subspaces. Our novel approach can be roughly divided into three successive steps. In the first step, differently reduced graphs are created out of the original graphs relying on node centrality measures. In the second step, we compute the graph edit distance between each reduced graph and all the other graphs of the corresponding graph subspace. Finally, we linearly combine the distances in the third step and feed them into a distance-based classifier to obtain the final classification result. On six graph data sets, we empirically confirm that the proposed multiple classifier system directly benefits from the combined distances computed in the various graph subspaces.

摘要

尽管在过去几十年的研究中付出了巨大努力,但一般图(即具有无约束标记和结构的图)的分类仍然是一项具有挑战性的任务。由于图的固有关系结构,很难甚至不可能将标准模式识别方法应用于图以实现高识别准确率。解决图分类这一重要问题的常用方法是将图匹配与基于距离的分类器或核机器结合使用。在本文中,我们通过一种新颖的框架来解决图分类的特定任务,该框架使用从广泛的简化图子空间中获取的信息。我们的新方法大致可分为三个连续步骤。第一步,基于节点中心性度量从原始图创建不同的简化图。第二步,我们计算每个简化图与相应图子空间中所有其他图之间的图编辑距离。最后,我们在第三步中对距离进行线性组合,并将它们输入到基于距离的分类器中以获得最终分类结果。在六个图数据集上,我们通过实验证实了所提出的多分类器系统直接受益于在各种图子空间中计算的组合距离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/516e/10533633/abd94af2990c/42979_2023_2194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验