Shu Tong, Mitra Gaurav, Alberts Jonathan, Viana Matheus P, Levy Emmanuel D, Hocky Glen M, Holt Liam J
Institute for Systems Genetics, NYU Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
Department of Chemistry, New York University, New York, New York, USA.
bioRxiv. 2023 Sep 21:2023.09.19.558334. doi: 10.1101/2023.09.19.558334.
The mesoscale organization of molecules into membraneless biomolecular condensates is emerging as a key mechanism of rapid spatiotemporal control in cells. Principles of biomolecular condensation have been revealed through reconstitution. However, intracellular environments are much more complex than test-tube environments: They are viscoelastic, highly crowded at the mesoscale, and are far from thermodynamic equilibrium due to the constant action of energy-consuming processes. We developed synDrops, a synthetic phase separation system, to study how the cellular environment affects condensate formation. Three key features enable physical analysis: synDrops are inducible, bioorthogonal, and have well-defined geometry. This design allows kinetic analysis of synDrop assembly and facilitates computational simulation of the process. We compared experiments and simulations to determine that macromolecular crowding promotes condensate nucleation but inhibits droplet growth through coalescence. ATP-dependent cellular activities help overcome the frustration of growth. In particular, actomyosin dynamics potentiate droplet growth by reducing confinement and elasticity in the mammalian cytoplasm, thereby enabling synDrop coarsening. Our results demonstrate that mesoscale molecular assembly is favored by the combined effects of crowding and active matter in the cytoplasm. These results move toward a better predictive understanding of condensate formation .
分子在中尺度上组织形成无膜生物分子凝聚物,正逐渐成为细胞中快速时空控制的关键机制。通过重组揭示了生物分子凝聚的原理。然而,细胞内环境比试管环境复杂得多:它们具有粘弹性,在中尺度上高度拥挤,并且由于耗能过程的持续作用而远离热力学平衡。我们开发了synDrops,一种合成相分离系统,以研究细胞环境如何影响凝聚物形成。三个关键特性使得能够进行物理分析:synDrops是可诱导的、生物正交的,并且具有明确的几何形状。这种设计允许对synDrop组装进行动力学分析,并便于对该过程进行计算模拟。我们比较了实验和模拟结果,以确定大分子拥挤促进凝聚物成核,但通过聚结抑制液滴生长。依赖ATP的细胞活动有助于克服生长的阻碍。特别是,肌动球蛋白动力学通过降低哺乳动物细胞质中的限制和弹性来增强液滴生长,从而使synDrop粗化。我们的结果表明,细胞质中的拥挤和活性物质的综合作用有利于中尺度分子组装。这些结果朝着更好地预测性理解凝聚物形成迈进。