文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大分子拥挤、相分离和内稳态在细菌细胞功能的协调中的作用。

Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.

机构信息

Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.

Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States.

出版信息

Chem Rev. 2024 Feb 28;124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622. Epub 2024 Feb 8.


DOI:10.1021/acs.chemrev.3c00622
PMID:38331392
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10906006/
Abstract

Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.

摘要

大分子拥挤影响所有细胞(包括细菌)中蛋白质和功能大分子复合物的活性。拥挤与 pH 值、离子强度和能量状态等理化参数一起,影响细胞质的结构,从而间接影响大分子功能。值得注意的是,拥挤还通过相分离促进生物分子凝聚物的形成,最初在真核细胞中发现,但最近发现其在细菌中发挥关键功能。细菌细胞需要多种机制来维持理化内稳态,特别是在条件波动的环境中,而生物分子凝聚物的形成就是这样一种机制。在这项工作中,我们将理化内稳态和大分子拥挤与细菌细胞中生物分子凝聚物的形成和功能联系起来,并将细菌中发现的超分子结构与真核细胞进行比较。我们专注于拥挤和相分离对细菌染色体复制、分离和细胞分裂的控制的影响,并讨论生物分子凝聚物对细菌细胞适应环境压力和适应能力的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/98b51528425f/cr3c00622_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/1198ff743883/cr3c00622_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/f08e9b694e78/cr3c00622_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/f82a9956ea52/cr3c00622_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/3770793942c3/cr3c00622_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8eef6f42b92e/cr3c00622_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/a8f84b71e16e/cr3c00622_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/3b5ac98a92cc/cr3c00622_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8dcd625a473e/cr3c00622_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/770454a49fe6/cr3c00622_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/159cf13bf4b5/cr3c00622_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/362c4c04911d/cr3c00622_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/76cac54a9976/cr3c00622_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8a1aed8ca82a/cr3c00622_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/9bbcd1400509/cr3c00622_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/acf85080fdad/cr3c00622_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/aa2887c8f567/cr3c00622_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/fdaeb849b68d/cr3c00622_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/31ba823608d7/cr3c00622_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/7e5ed233360e/cr3c00622_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/7e6c4decd9dd/cr3c00622_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/d060891040f7/cr3c00622_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8ee493345791/cr3c00622_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/c1c35d4f7a30/cr3c00622_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/54f99aa5fd45/cr3c00622_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/98b51528425f/cr3c00622_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/1198ff743883/cr3c00622_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/f08e9b694e78/cr3c00622_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/f82a9956ea52/cr3c00622_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/3770793942c3/cr3c00622_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8eef6f42b92e/cr3c00622_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/a8f84b71e16e/cr3c00622_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/3b5ac98a92cc/cr3c00622_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8dcd625a473e/cr3c00622_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/770454a49fe6/cr3c00622_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/159cf13bf4b5/cr3c00622_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/362c4c04911d/cr3c00622_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/76cac54a9976/cr3c00622_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8a1aed8ca82a/cr3c00622_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/9bbcd1400509/cr3c00622_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/acf85080fdad/cr3c00622_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/aa2887c8f567/cr3c00622_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/fdaeb849b68d/cr3c00622_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/31ba823608d7/cr3c00622_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/7e5ed233360e/cr3c00622_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/7e6c4decd9dd/cr3c00622_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/d060891040f7/cr3c00622_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/8ee493345791/cr3c00622_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/c1c35d4f7a30/cr3c00622_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/54f99aa5fd45/cr3c00622_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3167/10906006/98b51528425f/cr3c00622_0025.jpg

相似文献

[1]
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.

Chem Rev. 2024-2-28

[2]
Physicochemical homeostasis in bacteria.

FEMS Microbiol Rev. 2023-7-5

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress.

J Bacteriol. 2019-4-24

[5]
Liquid-Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics.

Int J Mol Sci. 2021-6-22

[6]
Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding.

Mol Cell. 2022-10-6

[7]
Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates.

Biochim Biophys Acta Mol Cell Res. 2021-4

[8]
Connecting the dots: the effects of macromolecular crowding on cell physiology.

Biophys J. 2014-12-16

[9]
Biomolecular condensates as stress sensors and modulators of bacterial signaling.

PLoS Pathog. 2024-8

[10]
A framework for understanding the functions of biomolecular condensates across scales.

Nat Rev Mol Cell Biol. 2021-3

引用本文的文献

[1]
Antechodynamics and Antechokinetics: Dynamics and Kinetics of Antibiotic Resistance Biomolecules.

Biomolecules. 2025-6-5

[2]
An Overview of Liquid-Liquid Phase Separation and Its Mechanisms in Sepsis.

J Inflamm Res. 2025-3-17

[3]
Transformative insights in breast cancer: review of atomic force microscopy applications.

Discov Oncol. 2025-2-28

[4]
60 Years of Studies into the Initiation of Chromosome Replication in Bacteria.

Biomolecules. 2025-2-1

[5]
Liposome-Encapsulated Lysates to Reconstitute Intracellular Macromolecular Crowding Effects.

ACS Synth Biol. 2025-3-21

[6]
Targeting Bacterial Cell Division with Benzodioxane-Benzamide FtsZ Inhibitors as a Novel Strategy to Fight Gram-Positive Ovococcal Pathogens.

Int J Mol Sci. 2025-1-16

[7]
Oligomerization-mediated phase separation in the nucleoid-associated sensory protein H-NS is controlled by ambient cues.

Protein Sci. 2025-1

[8]
Hydration behavior of L-proline in the presence of mono, bis, tris-(2-hydroxyethyl) ammonium acetate protic ionic liquids:  Thermophysical properties.

Sci Rep. 2024-11-8

[9]
Quantitative characterization of non-specific interaction of two globular proteins with Dextran T70 in a binary mixture.

Eur Biophys J. 2024-11

[10]
Oxidative stress elicits the remodeling of vimentin filaments into biomolecular condensates.

Redox Biol. 2024-9

本文引用的文献

[1]
An experimental framework to assess biomolecular condensates in bacteria.

Nat Commun. 2024-4-15

[2]
An atlas of protein homo-oligomerization across domains of life.

Cell. 2024-2-15

[3]
Passive diffusion accounts for the majority of intracellular nanovesicle transport.

Life Sci Alliance. 2024-1

[4]
Simulation-based Reconstructed Diffusion unveils the effect of aging on protein diffusion in Escherichia coli.

PLoS Comput Biol. 2023-9

[5]
Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB.

Elife. 2023-9-5

[6]
Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm.

Plant Cell Physiol. 2024-5-14

[7]
RNase E biomolecular condensates stimulate PNPase activity.

Sci Rep. 2023-8-9

[8]
The membrane surface as a platform that organizes cellular and biochemical processes.

Dev Cell. 2023-8-7

[9]
Cyclic di-AMP traps proton-coupled K transporters of the KUP family in an inward-occluded conformation.

Nat Commun. 2023-6-21

[10]
Physicochemical homeostasis in bacteria.

FEMS Microbiol Rev. 2023-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索