文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可解释算法取证。

Interpretable algorithmic forensics.

机构信息

School of Law, Duke University School of Law, Durham, NC 27708.

Wilson Center for Science and Justice, Durham, NC 27708.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2301842120. doi: 10.1073/pnas.2301842120. Epub 2023 Oct 2.


DOI:10.1073/pnas.2301842120
PMID:37782786
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10576126/
Abstract

One of the most troubling trends in criminal investigations is the growing use of "black box" technology, in which law enforcement rely on artificial intelligence (AI) models or algorithms that are either too complex for people to understand or they simply conceal how it functions. In criminal cases, black box systems have proliferated in forensic areas such as DNA mixture interpretation, facial recognition, and recidivism risk assessments. The champions and critics of AI argue, mistakenly, that we face a catch 22: While black box AI is not understandable by people, they assume that it produces more accurate forensic evidence. In this Article, we question this assertion, which has so powerfully affected judges, policymakers, and academics. We describe a mature body of computer science research showing how "glass box" AI-designed to be interpretable-can be more accurate than black box alternatives. Indeed, black box AI performs predictably in settings like the criminal system. Debunking the black box performance myth has implications for forensic evidence, constitutional criminal procedure rights, and legislative policy. Absent some compelling-or even credible-government interest in keeping AI as a black box, and given the constitutional rights and public safety interests at stake, we argue that a substantial burden rests on the government to justify black box AI in criminal cases. We conclude by calling for judicial rulings and legislation to safeguard a right to interpretable forensic AI.

摘要

刑事调查中最令人困扰的趋势之一是越来越多地使用“黑盒”技术,执法部门依赖于人工智能 (AI) 模型或算法,这些模型或算法要么过于复杂,人们无法理解,要么根本隐瞒其运作方式。在刑事案件中,黑盒系统在法医领域如 DNA 混合物解释、人脸识别和累犯风险评估中已经泛滥。AI 的拥护者和批评者错误地认为,我们面临一个两难境地:虽然人们无法理解黑盒 AI,但他们假设它会产生更准确的法医证据。在本文中,我们质疑这一断言,因为它对法官、政策制定者和学者产生了巨大影响。我们描述了大量计算机科学研究,这些研究表明,旨在可解释的“玻璃盒” AI 可以比黑盒替代品更准确。事实上,黑盒 AI 在刑事系统等环境中表现可预测。揭穿黑盒性能神话对法医证据、宪法刑事程序权利和立法政策都有影响。如果没有政府在将 AI 保持为黑盒方面的一些令人信服的——甚至是可信的——利益,并且考虑到所涉及的宪法权利和公共安全利益,我们认为政府有责任在刑事案件中为黑盒 AI 提供合理的理由。最后,我们呼吁司法裁决和立法来保护可解释的法医 AI 权利。

相似文献

[1]
Interpretable algorithmic forensics.

Proc Natl Acad Sci U S A. 2023-10-10

[2]
A brief history of artificial intelligence embryo selection: from black-box to glass-box.

Hum Reprod. 2024-2-1

[3]
Artificial intelligence and explanation: How, why, and when to explain black boxes.

Eur J Radiol. 2024-4

[4]
Explainable AI for Bioinformatics: Methods, Tools and Applications.

Brief Bioinform. 2023-9-20

[5]
Explainability and causability in digital pathology.

J Pathol Clin Res. 2023-7

[6]
From understanding to justifying: Computational reliabilism for AI-based forensic evidence evaluation.

Forensic Sci Int Synerg. 2024-8-30

[7]
The Virtues of Interpretable Medical Artificial Intelligence.

Camb Q Healthc Ethics. 2022-12-16

[8]
Design publicity of black box algorithms: a support to the epistemic and ethical justifications of medical AI systems.

J Med Ethics. 2022-7

[9]
The Virtues of Interpretable Medical AI.

Camb Q Healthc Ethics. 2024-7

[10]
The integration and implications of artificial intelligence in forensic science.

Forensic Sci Med Pathol. 2024-9

引用本文的文献

[1]
Development and Validation of a Machine Learning-Based Online Prognostic Model for Cervical Spondylosis Patients After Anterior Cervical Discectomy and Fusion: A Multicenter Study.

JOR Spine. 2025-7-28

[2]
Digital Biomarkers for Parkinson Disease: Bibliometric Analysis and a Scoping Review of Deep Learning for Freezing of Gait.

J Med Internet Res. 2025-5-20

[3]
Prediction model for spinal cord injury in spinal tuberculosis patients using multiple machine learning algorithms: a multicentric study.

Sci Rep. 2024-4-2

[4]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

[5]
Science, evidence, law, and justice.

Proc Natl Acad Sci U S A. 2023-10-10

本文引用的文献

[1]
The accuracy, fairness, and limits of predicting recidivism.

Sci Adv. 2018-1-17

[2]
Can we open the black box of AI?

Nature. 2016-10-6

[3]
Risk Assessment in Criminal Sentencing.

Annu Rev Clin Psychol. 2015-12-11

[4]
Developing a practical forecasting screener for domestic violence incidents.

Eval Rev. 2005-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索