金纳米棒在有序厚介孔二氧化硅中的有效分布:一种无创诊疗方法的选择。
Effective Distribution of Gold Nanorods in Ordered Thick Mesoporous Silica: A Choice of Noninvasive Theranostics.
作者信息
Prasad Rajendra, Selvaraj Kaliaperumal
机构信息
Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR National Chemical Laboratory, Pune 411008, India.
Interventional Theranostics & Multimode Imaging Lab, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
出版信息
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47615-47627. doi: 10.1021/acsami.3c06108. Epub 2023 Oct 2.
Porous silica coated gold nanorod core-shell structures demonstrate a multifunctional role in bioimaging, drug delivery, and cancer therapeutics applications. Here, we address a new approach for effective distribution of gold nanorods (GNRs) in a mesoporous silica (MS) shell, viz., one nanorod in one silica particle (GMS). We have studied that silica coating presents major advantages for the better biocompatibility and stability of GNRs. In this study, two different thicknesses of silica shell over GNRs have been discussed as per the application's need; GNRs in thin silica (11 nm) are fit for phototherapy and bioimaging, whereas thick and porous silica (51 nm) coated gold nanorods are suitable for triggered drug delivery and theranostics. However, effective distribution of GNRs in ordered architecture of thick mesoporous silica (MS, more than 50 nm thickness) with high surface area (more than 1000 m/g) is not well understood so far. Here, we present methodical investigations for uniform and highly ordered mesoporous silica coating over GNRs with tunable thickness (6 to 51 nm). Judicious identification and optimization of different reaction parameters like concentrations of silica precursor (TEOS, 1.85-43.9 mM), template (CTAB, 0.9-5.7 mM), effect of temperature, pH (8.6-10.8), stirring speed (100-400 rpm), and, most importantly, the mode of addition of TEOS with GNRs have been discussed. Studies with thick, porous silica coated GNRs simplify the highest ever reported surface area (1100 m/g) and cargo capacity (57%) with better product yield (g/batch). First and foremost, we report a highly scalable (more than 500 mL) and rapid direct deposition of an ordered MS shell around GNRs. These engineered core-shell nanoparticles demonstrate X-ray contrast property, synergistic photothermal-chemotherapeutics, and imaging of tumor cell (96% cell death) due to released fluorescent anticancer drug molecules and photothermal effect (52 °C) of embedded GNRs. A deeper insight into their influence on the architectural features and superior theranostics performances has been illustrated in detail. Hence, these findings indicate the potential impact of individual GMS for image guided combination therapeutics of cancer.
多孔二氧化硅包覆的金纳米棒核壳结构在生物成像、药物递送和癌症治疗应用中发挥着多功能作用。在此,我们提出了一种在介孔二氧化硅(MS)壳层中有效分布金纳米棒(GNRs)的新方法,即一个二氧化硅颗粒中包含一根纳米棒(GMS)。我们已经研究发现,二氧化硅包覆对于提高GNRs的生物相容性和稳定性具有主要优势。在本研究中,根据应用需求讨论了两种不同厚度的GNRs二氧化硅壳层;薄二氧化硅(11 nm)包覆的GNRs适用于光疗和生物成像,而厚的多孔二氧化硅(51 nm)包覆的金纳米棒则适用于触发式药物递送和诊疗。然而,到目前为止,对于GNRs在具有高比表面积(超过1000 m/g)的厚介孔二氧化硅(MS,厚度超过50 nm)有序结构中的有效分布还了解不足。在此,我们展示了对GNRs进行厚度可调(6至51 nm)的均匀且高度有序介孔二氧化硅包覆的系统研究。讨论了对不同反应参数的明智识别和优化,如二氧化硅前驱体(TEOS,1.85 - 43.9 mM)浓度、模板(CTAB,0.9 - 5.7 mM)、温度影响、pH值(8.6 - 10.8)、搅拌速度(100 - 400 rpm),以及最重要的是TEOS与GNRs的添加方式。对厚的多孔二氧化硅包覆GNRs的研究显示出有史以来最高的比表面积(1100 m/g)和载药量(57%),且产品产率更高(克/批次)。首先,我们报道了一种可高度扩展(超过500 mL)且能快速在GNRs周围直接沉积有序MS壳层的方法。这些工程化的核壳纳米颗粒展现出X射线造影特性、协同光热 - 化学治疗效果,以及由于释放的荧光抗癌药物分子和嵌入的GNRs的光热效应(52 °C)而实现的肿瘤细胞成像(96%细胞死亡)。已详细阐述了对其对结构特征和卓越诊疗性能影响的更深入见解。因此,这些发现表明单个GMS在癌症图像引导联合治疗中的潜在影响。