文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser.

作者信息

Liu Yang, Xu Ming, Chen Qing, Guan Guannan, Hu Wen, Zhao Xiuli, Qiao Mingxi, Hu Haiyang, Liang Ying, Zhu Heyun, Chen Dawei

机构信息

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China ; Department of Pharmacy, Bengbu Medical College, Bengbu, People's Republic of China.

College of Pharmaceutical Science, Soochow University, Suzhou, People's Republic of China.

出版信息

Int J Nanomedicine. 2015 Jul 28;10:4747-61. doi: 10.2147/IJN.S82940. eCollection 2015.


DOI:10.2147/IJN.S82940
PMID:26251596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4524460/
Abstract

Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/f9221f28bdb2/ijn-10-4747Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/4126d681f809/ijn-10-4747Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/5c4ba9efc4af/ijn-10-4747Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/72b028fe476b/ijn-10-4747Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/0f930e0226c8/ijn-10-4747Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/da69d1ccbee6/ijn-10-4747Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/1e1cd14bd9a5/ijn-10-4747Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/70bba7cc6d00/ijn-10-4747Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/02da81099827/ijn-10-4747Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/e2b1ffc9436e/ijn-10-4747Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/6bb953e55900/ijn-10-4747Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/cb30a50667ef/ijn-10-4747Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/dfd073b38b76/ijn-10-4747Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/f9221f28bdb2/ijn-10-4747Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/4126d681f809/ijn-10-4747Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/5c4ba9efc4af/ijn-10-4747Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/72b028fe476b/ijn-10-4747Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/0f930e0226c8/ijn-10-4747Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/da69d1ccbee6/ijn-10-4747Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/1e1cd14bd9a5/ijn-10-4747Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/70bba7cc6d00/ijn-10-4747Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/02da81099827/ijn-10-4747Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/e2b1ffc9436e/ijn-10-4747Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/6bb953e55900/ijn-10-4747Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/cb30a50667ef/ijn-10-4747Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/dfd073b38b76/ijn-10-4747Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9157/4524460/f9221f28bdb2/ijn-10-4747Fig13.jpg

相似文献

[1]
Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser.

Int J Nanomedicine. 2015-7-28

[2]
Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent.

Acta Biomater. 2021-10-15

[3]
Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.

J Control Release. 2017-5-10

[4]
Gold nanoclusters modified mesoporous silica coated gold nanorods: Enhanced photothermal properties and fluorescence imaging.

J Photochem Photobiol B. 2021-2

[5]
A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy.

Adv Healthc Mater. 2019-9-12

[6]
PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness.

Mater Sci Eng C Mater Biol Appl. 2019-6-12

[7]
A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets.

Small. 2016-1-27

[8]
Dual-Stimuli Responsive Nanotheranostics for Multimodal Imaging Guided Trimodal Synergistic Therapy.

Small. 2016-11-15

[9]
A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer.

Mater Sci Eng C Mater Biol Appl. 2019-10-14

[10]
Gold nanorods based multicompartment mesoporous silica composites as bioagents for highly efficient photothermal therapy.

J Colloid Interface Sci. 2019-4-17

引用本文的文献

[1]
Advancing gastric cancer treatment: nanotechnology innovations and future prospects.

Cell Biol Toxicol. 2024-11-20

[2]
Analysis and Optimization of Light Absorption and Scattering Properties of Metal Nanocages.

Nanomaterials (Basel). 2024-10-4

[3]
Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics.

Pharmaceutics. 2023-9-19

[4]
Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art.

Nanomaterials (Basel). 2023-9-10

[5]
Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy.

Molecules. 2023-6-29

[6]
Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy.

Front Pharmacol. 2022-12-22

[7]
Surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles.

Nanoscale Adv. 2019-10-30

[8]
Design and Development of Gold-Loaded and Boron-Attached Multicore Manganese Ferrite Nanoparticles as a Potential Agent in Biomedical Applications.

ACS Omega. 2022-6-3

[9]
RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC.

Int J Nanomedicine. 2022

[10]
Gold nanotheranostics: future emblem of cancer nanomedicine.

Nanobiomedicine (Rij). 2021-10-26

本文引用的文献

[1]
Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy.

ACS Nano. 2014-11-19

[2]
A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression.

Int J Nanomedicine. 2014-11-5

[3]
Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy.

Small. 2014-11-3

[4]
Gold nanoparticles for photothermally controlled drug release.

Nanomedicine (Lond). 2014-9

[5]
Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings.

Nanoscale. 2014-10-7

[6]
Nanoparticles for photothermal therapies.

Nanoscale. 2014-8-21

[7]
Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia.

J Biomed Nanotechnol. 2014-8

[8]
Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods.

Biomaterials. 2014-7-1

[9]
tLyP-1-conjugated Au-nanorod@SiO(2) core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy.

Langmuir. 2014-7-8

[10]
Homing peptide-conjugated gold nanorods: the effect of amino acid sequence display on nanorod uptake and cellular proliferation.

Bioconjug Chem. 2014-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索