Suppr超能文献

一种用于在单车碰撞事故中建模交互效应的全贝叶斯多层次方法。

A full Bayesian multilevel approach for modeling interaction effects in single-vehicle crashes.

机构信息

ITS Research Center, Wuhan University of Technology, Wuhan, PR China; School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, PR China.

School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, PR China.

出版信息

Accid Anal Prev. 2023 Dec;193:107331. doi: 10.1016/j.aap.2023.107331. Epub 2023 Sep 30.

Abstract

Interaction effects constitute crucial crash attributes that can be classified into two distinct categories: spatiotemporal interactions and factor interactions. These interactions are rarely addressed systematically in modeling the severity of single-vehicle (SV) crashes. This study focuses on uncovering these crash attributes by designing a full Bayesian spatiotemporal interaction multilevel logit (STIML-logit) approach with heterogeneity in means and variances (HMV). Meanwhile, a nested Gaussian conditional autoregressive (CAR) structure is proposed to fit the spatiotemporal interaction component and its effectiveness is verified by calibrating four different interaction patterns. A standard multilevel logit (with and without HMV), a multilevel logit with HMV, and a spatiotemporal multilevel logit with HMV are constructed for comparison. Risk factors are decomposed into traffic environment factors (group level) and individual crash factors (case level) to construct a multilevel structure and to capture possible interactions between risk factors from different levels (cross-level factor interactions). We perform regression modeling utilizing SV crash cases covering 96 major urban roads in Shandong, China. The modeling results underscore several significant findings: (1) the STIML-logit with HMV demonstrates the best regression performance, suggesting that systematically dealing with the interaction effects and the HMV is a trustworthy modeling perspective; (2) crash models with the nested CAR outperform those with the traditional CAR and the result is supported by all the spatiotemporal statistical functions, highlighting the potential advantages of the nested structure; (3) all the environment factors maintain significant interactions with the case factors, highlighting that the contribution of the environment factors to crash injuries is not constant but is rather influenced by the specific case-related crash factors. The study introduces a promising regression architecture for modeling crash injuries and revealing subtle crash attributes.

摘要

交互作用构成了至关重要的碰撞属性,可以分为两类:时空交互作用和因素交互作用。这些交互作用在单辆车辆(SV)碰撞严重程度的建模中很少被系统地考虑。本研究通过设计具有均值和方差异质性(HMV)的全贝叶斯时空交互多层次逻辑(STIML-logit)方法来关注这些碰撞属性,同时提出了嵌套高斯条件自回归(CAR)结构来拟合时空交互作用部分,并通过校准四种不同的交互模式来验证其有效性。构建了标准多层次逻辑(具有和不具有 HMV)、具有 HMV 的多层次逻辑和具有 HMV 的时空多层次逻辑进行比较。将风险因素分解为交通环境因素(组水平)和个体碰撞因素(案例水平),构建多层次结构,并捕捉来自不同水平的风险因素之间的可能交互(交叉水平因素交互)。我们利用中国山东省 96 条主要城市道路的 SV 碰撞案例进行回归建模。建模结果强调了几个重要发现:(1)具有 HMV 的 STIML-logit 表现出最佳的回归性能,表明系统地处理交互作用和 HMV 是一种可靠的建模视角;(2)具有嵌套 CAR 的碰撞模型优于具有传统 CAR 的模型,并且所有时空统计函数都支持这一结果,突出了嵌套结构的潜在优势;(3)所有环境因素与案例因素保持显著的交互作用,突出了环境因素对碰撞伤害的贡献不是恒定的,而是受到特定案例相关碰撞因素的影响。本研究为建模碰撞伤害和揭示微妙碰撞属性引入了一种有前途的回归架构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验