Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430000, PR China; School of Transportation, Shandong University of Technology, Zibo 255000, PR China.
School of Transportation, Shandong University of Technology, Zibo 255000, PR China.
Accid Anal Prev. 2023 Apr;183:106983. doi: 10.1016/j.aap.2023.106983. Epub 2023 Jan 23.
Single-vehicle (SV) crash severity model considering spatiotemporal correlations has been extensively investigated, but spatiotemporal interactions have not received sufficient attention. This research is dedicated to propose a superior spatiotemporal interaction correlated random parameters logit approach with heterogeneity in means and variances (STICRP-logit-HMV) for systematically characterizing unobserved heterogeneity, spatiotemporal correlations, and spatiotemporal interactions. Four flexible interaction formulations are developed to uncover the spatiotemporal interactions, including linear structure, Kronecker product, mixture-2 model, and mixture-5 model. Four candidate approaches-random parameters logit (RP-logit), RP-logit with heterogeneity in means and variances (RP-logit-HMV), correlated RP-logit-HMV (CRP-logit-HMV), and spatiotemporal CRP-logit-HMV (STCRP-logit-HMV)-are also established and compared with the proposed model. SV crash observations in Shandong Province, China, are employed to calibrate regression parameters. The model comparison results show that (1) the performance of the RP-logit-HMV model outperforms the RP-logit model, implying that capturing heterogeneity in the means and variances can strengthen model fit; (2) the CRP-logit-HMV model and the RP-logit-HMV model are comparable; (3) the STCRP-logit-HMV model outperforms the CRP-logit-HMV model, implying that addressing the spatiotemporal crash mechanisms is beneficial to the overall fitting of the crash model; (4) the STICRP-logit-HMV model performs better than the STCRP-logit-HMV model and this finding remains stable across different interaction formulations, indicating that comprehensively reflecting the spatiotemporal correlations and their interactions is a promising approach to model SV crashes. Among the four interaction models, the STICRP-logit-HMV model with mixture-5 component maintains the best fit, which is a recommended approach to model crash severity. The regression coefficients for young driver, male driver, and non-dry road surface are random across observations, suggesting that the influence of these factors on SV crash severity maintains significant heterogeneity effects. The research results provide transportation professionals with a superior statistical framework for diagnosing crash severity, which is beneficial for improving traffic safety.
已广泛研究了考虑时空相关性的单车事故(SV)碰撞严重程度模型,但时空相互作用尚未得到足够重视。本研究旨在提出一种具有均值和方差异质性的优越时空交互相关随机参数对数模型(STICRP-logit-HMV),以系统地描述未观测到的异质性、时空相关性和时空相互作用。为了揭示时空相互作用,开发了四种灵活的交互公式,包括线性结构、克罗内克积、混合-2 模型和混合-5 模型。还建立并比较了四个候选方法:随机参数对数模型(RP-logit)、具有均值和方差异质性的随机参数对数模型(RP-logit-HMV)、相关随机参数对数模型(CRP-logit-HMV)和时空相关随机参数对数模型(STCRP-logit-HMV)。采用中国山东省的 SV 碰撞观测值来校准回归参数。模型比较结果表明:(1)RP-logit-HMV 模型的性能优于 RP-logit 模型,表明捕捉均值和方差的异质性可以增强模型拟合度;(2)CRP-logit-HMV 模型和 RP-logit-HMV 模型具有可比性;(3)STCRP-logit-HMV 模型优于 CRP-logit-HMV 模型,表明解决时空碰撞机制有利于整体拟合碰撞模型;(4)STICRP-logit-HMV 模型优于 STCRP-logit-HMV 模型,且这一发现在不同交互模型中保持稳定,表明全面反映时空相关性及其相互作用是建模 SV 碰撞的一种有前途的方法。在四种交互模型中,具有混合-5 成分的 STICRP-logit-HMV 模型保持最佳拟合,是建模碰撞严重程度的推荐方法。年轻驾驶员、男性驾驶员和非干燥路面的回归系数在观测值之间是随机的,这表明这些因素对 SV 碰撞严重程度的影响保持着显著的异质性效应。研究结果为交通专业人员提供了一种优越的统计框架来诊断碰撞严重程度,有助于提高交通安全。