Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA.
Sci Rep. 2023 Oct 2;13(1):16517. doi: 10.1038/s41598-023-42045-w.
Pancreatic fine-needle aspirations are the gold-standard diagnostic procedure for the evaluation of pancreatic ductal adenocarcinoma. A suspicion for malignancy can escalate towards chemotherapy followed by a major surgery and therefore is a high-stakes task for the pathologist. In this paper, we propose a deep learning framework, MIPCL, that can serve as a helpful screening tool, predicting the presence or absence of cancer. We also reproduce two deep learning models that have found success in surgical pathology for our cytopathology study. Our MIPCL significantly improves over both models across all evaluated metrics (F1-Score: 87.97% vs 88.70% vs 91.07%; AUROC: 0.9159 vs. 0.9051 vs 0.9435). Additionally, our model is able to recover the most contributing regions on the slide for the final prediction. We also present a dataset curation strategy that increases the number of training examples from an existing dataset, thereby reducing the resource burden tied to collecting and scanning additional cases.
胰腺细针抽吸术是评估胰腺导管腺癌的金标准诊断程序。对恶性肿瘤的怀疑可能会升级为化疗,随后是大手术,因此对病理学家来说是一项高风险的任务。在本文中,我们提出了一个深度学习框架 MIPCL,可以作为一个有用的筛选工具,预测癌症的存在或不存在。我们还为细胞学研究复制了两个在外科病理学中取得成功的深度学习模型。我们的 MIPCL 在所有评估指标上都明显优于这两个模型(F1 得分:87.97%对 88.70%对 91.07%;AUROC:0.9159 对 0.9051 对 0.9435)。此外,我们的模型能够恢复幻灯片上对最终预测贡献最大的区域。我们还提出了一种数据集管理策略,该策略可以从现有数据集中增加训练示例的数量,从而减少收集和扫描更多病例带来的资源负担。