Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Nat Biomed Eng. 2021 Jun;5(6):555-570. doi: 10.1038/s41551-020-00682-w. Epub 2021 Mar 1.
Deep-learning methods for computational pathology require either manual annotation of gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and typically suffer from poor domain adaptation and interpretability. Here we report an interpretable weakly supervised deep-learning method for data-efficient WSI processing and learning that only requires slide-level labels. The method, which we named clustering-constrained-attention multiple-instance learning (CLAM), uses attention-based learning to identify subregions of high diagnostic value to accurately classify whole slides and instance-level clustering over the identified representative regions to constrain and refine the feature space. By applying CLAM to the subtyping of renal cell carcinoma and non-small-cell lung cancer as well as the detection of lymph node metastasis, we show that it can be used to localize well-known morphological features on WSIs without the need for spatial labels, that it overperforms standard weakly supervised classification algorithms and that it is adaptable to independent test cohorts, smartphone microscopy and varying tissue content.
深度学习方法在计算病理学中需要手动注释千兆像素全切片图像 (WSI) 或具有切片级标签的 WSI 大数据集,并且通常存在较差的领域适应和可解释性。在这里,我们报告了一种可解释的弱监督深度学习方法,用于数据高效的 WSI 处理和学习,该方法仅需要切片级标签。该方法名为聚类约束注意力多实例学习 (CLAM),使用基于注意力的学习来识别具有高诊断价值的子区域,以准确分类整个幻灯片,并在识别的代表性区域上进行实例级聚类,以约束和细化特征空间。通过将 CLAM 应用于肾细胞癌和非小细胞肺癌的亚型分类以及淋巴结转移的检测,我们表明它可以用于在不需要空间标签的情况下定位 WSI 上众所周知的形态特征,它优于标准的弱监督分类算法,并且适应独立的测试队列、智能手机显微镜和不同的组织含量。