State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China.
Key Laboratory for Agricultural Biotechnology of Jilin Provincial, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Jilin, China.
Plant Biotechnol J. 2024 Feb;22(2):316-329. doi: 10.1111/pbi.14185. Epub 2023 Oct 2.
Nitrate (NO ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO supply under both hydroponic and field conditions. The N-labelled NO absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO -transport and root-to-shoot NO translocation. Transcriptome analysis further showed, upon NO supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
硝酸盐(NO3-)对植物的生长和发育至关重要,在低可用性下常限制作物的生产力。与模式植物拟南芥相比,NO3-获取和利用的分子机制在玉米中仍很大程度上不清楚。特别是,只有少数基因被用于提高氮利用效率(NUE)。在这里,我们证明了NO3-诱导的ZmNRT1.1B(ZmNPF6.6)正向调控玉米中NO3-依赖的生长和 NUE。我们表明,串联重复的蛋白形式ZmNRT1.1C与 NO3-供应下玉米幼苗的生长无关;然而,ZmNRT1.1B 的功能缺失显著削弱了在充足的 NO3-供应下,无论是在水培还是田间条件下,植物的生长。15N 标记的 NO3-吸收测定表明,ZmNRT1.1B 介导高亲和力的 NO3-运输和根到梢的 NO3-转运。转录组分析进一步表明,在 NO3-供应下,ZmNRT1.1B 促进 ZmNLP3.1(ZmNLP8)的细胞质到核的穿梭,这共同调节涉及 NO3-反应、细胞分裂素生物合成和碳代谢的基因的表达。值得注意的是,现代玉米杂交种中 ZmNRT1.1B 的过表达提高了限氮田间的籽粒产量。总之,我们的研究揭示了 ZmNRT1.1B 在高亲和力 NO3-运输和信号转导中的关键作用,并为培育高效氮利用的高产品种提供了有价值的遗传资源。