Suppr超能文献

哪种方法能提供更高的信噪比:结构方程建模还是加权综合回归分析?

Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?

机构信息

University of Notre Dame, Notre Dame, Indiana, USA.

Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Br J Math Stat Psychol. 2023 Nov;76(3):646-678. doi: 10.1111/bmsp.12293. Epub 2022 Dec 2.

Abstract

Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal-to-noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB-SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB-SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.

摘要

观测数据通常包含测量误差。基于协方差的结构方程模型(CB-SEM)能够对测量误差进行建模,并得出一致的参数估计。相比之下,使用加权综合和偏最小二乘法(PLS)的回归分析方法更便于对个体/参与者进行预测和诊断。但是,当预测变量包含误差时,使用加权综合的回归分析会导致回归系数减弱。与 CB-SEM 是分析观测数据的首选方法的普遍观点相反,本文表明,通过加权综合进行回归分析会产生具有更小标准误差的参数估计,从而对应更大的信噪比(SNR)值。特别是,如果每个因素的项目都是平行的,那么即使 SEM 模型通过有效的方法正确指定和估计,通过最小二乘法(LS)与等权综合的回归系数的 SNR 在数学上也大于 CB-SEM。分析、数值和实证结果还表明,即使在总体分布为多元正态的情况下,在许多情况下,加权综合的 LS 回归在 CB-SEM 的常规最大似然方法的表现也一样好,甚至更好。结果还表明,当考虑综合权重的抽样误差时,LS 回归系数比那些基于权重的回归系数更有效。

相似文献

10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验