Suppr超能文献

基于迁移图嵌入的空间转录组学关节细胞分割与注释

joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings.

作者信息

Jin Kang, Zhang Zuobai, Zhang Ke, Viggiani Francesca, Callahan Claire, Tang Jian, Aronow Bruce J, Shu Jian

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA.

出版信息

bioRxiv. 2023 Sep 22:2023.09.19.558548. doi: 10.1101/2023.09.19.558548.

Abstract

Single-cell spatial transcriptomics such as hybridization or sequencing technologies can provide subcellular resolution that enables the identification of individual cell identities, locations, and a deep understanding of subcellular mechanisms. However, accurate segmentation and annotation that allows individual cell boundaries to be determined remains a major challenge that limits all the above and downstream insights. Current machine learning methods heavily rely on nuclei or cell body staining, resulting in the significant loss of both transcriptome depth and the limited ability to learn latent representations of spatial colocalization relationships. Here, we propose , a graph deep learning model that leverages transcript colocalization relationships for joint noise-aware cell segmentation and molecular annotation in 2D and 3D spatial transcriptomics data. Graph embeddings for the cell annotation are transferred as a component of multi-modal input for cell segmentation, which is employed to enrich gene relationships throughout the process. To evaluate performance, we benchmarked with state-of-the-art methods and observed significant improvement in cell segmentation accuracies and numbers of detected transcripts across various spatial technologies and tissues. To streamline segmentation processes, we constructed expansive pre-trained models, which yield high segmentation accuracy in new data through transfer learning and self-distillation, demonstrating the generalizability of .

摘要

诸如杂交或测序技术之类的单细胞空间转录组学能够提供亚细胞分辨率,从而能够识别单个细胞的身份、位置,并深入了解亚细胞机制。然而,准确的分割和注释(即确定单个细胞边界)仍然是一个重大挑战,限制了上述及下游的深入研究。当前的机器学习方法严重依赖细胞核或细胞体染色,导致转录组深度显著损失,且学习空间共定位关系潜在表征的能力有限。在此,我们提出了一种图深度学习模型,该模型利用转录本共定位关系,对二维和三维空间转录组学数据进行联合噪声感知细胞分割和分子注释。用于细胞注释的图嵌入作为细胞分割多模态输入的一个组成部分进行传递,在整个过程中用于丰富基因关系。为了评估性能,我们将该模型与最先进的方法进行了基准测试,发现在各种空间技术和组织中,细胞分割准确率和检测到的转录本数量都有显著提高。为了简化分割过程,我们构建了扩展的预训练模型,通过迁移学习和自蒸馏在新数据中产生了高分割准确率,证明了该模型的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/10541596/434f7a1093a0/nihpp-2023.09.19.558548v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验