Suppr超能文献

高分辨率魔角旋转碳核磁共振光谱(HRMAS C NMR)和基因组规模代谢建模确定苏氨酸是……的首选双氧化还原底物。

HRMAS C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for .

作者信息

Pavao Aidan, Zhang Ella, Monestier Auriane, Peltier Johann, Dupuy Bruno, Cheng Leo, Bry Lynn

机构信息

Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

bioRxiv. 2023 Sep 18:2023.09.18.558167. doi: 10.1101/2023.09.18.558167.

Abstract

Stickland-fermenting preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen . Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with C isotopomer analyses of [U-C]threonine metabolites inferred threonine's reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the 2-hydroxyisocaproate CoA transferase. metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in and the protective commensal impacts pathogen colonization and growth expanding the range of dual-redox substrates that modulate host risks for disease.

摘要

Stickland发酵优先发酵氨基酸以产生能量和用于生长的合成代谢底物。在肠道生态系统中,这些物种偏好双氧化还原底物,特别是富含粘蛋白的亮氨酸。在这里,我们确定了苏氨酸(一种更普遍、富含粘蛋白的底物)如何支持病原体中的双氧化还原代谢。实时、高分辨率魔角旋转核磁共振光谱结合动态通量平衡分析,推断出四种不同的苏氨酸发酵途径的动态募集,包括那些具有中间积累的途径,这些途径支持细胞对能量、氧化还原代谢、氮循环和生长不断变化的需求。对[U-C]苏氨酸代谢物进行C同位素异构体分析的模型预测推断,苏氨酸通过还原性亮氨酸途径还原为丁酸,这一发现通过删除2-羟基异己酸辅酶A转移酶得到证实。代谢组学和宏转录组学分析说明了该病原体和共生保护菌中的苏氨酸代谢如何影响病原体的定殖和生长,从而扩大了调节宿主疾病风险的双氧化还原底物的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44c9/10541586/b03ece0355a7/nihpp-2023.09.18.558167v1-f0001.jpg

相似文献

1
2
Elucidating dynamic anaerobe metabolism with HRMAS C NMR and genome-scale modeling.
Nat Chem Biol. 2023 May;19(5):556-564. doi: 10.1038/s41589-023-01275-9. Epub 2023 Mar 9.
4
In vivo commensal control of Clostridioides difficile virulence.
Cell Host Microbe. 2021 Nov 10;29(11):1693-1708.e7. doi: 10.1016/j.chom.2021.09.007. Epub 2021 Oct 11.
5
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations.
Anaerobe. 2022 Aug;76:102600. doi: 10.1016/j.anaerobe.2022.102600. Epub 2022 Jun 13.
8
Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites.
Nat Microbiol. 2022 May;7(5):695-706. doi: 10.1038/s41564-022-01109-9. Epub 2022 May 2.
9
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
10
Characterizing metabolic drivers of infection with activity-based hydrazine probes.
Front Pharmacol. 2023 Jan 26;14:1074619. doi: 10.3389/fphar.2023.1074619. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验