Suppr超能文献

利用高分辨魔角旋转核磁共振(HRMAS C NMR)和基于基因组规模的代谢模型阐明动态厌氧菌代谢。

Elucidating dynamic anaerobe metabolism with HRMAS C NMR and genome-scale modeling.

机构信息

Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Ginkgo Bioworks, The Innovation and Design Building, Boston, MA, USA.

出版信息

Nat Chem Biol. 2023 May;19(5):556-564. doi: 10.1038/s41589-023-01275-9. Epub 2023 Mar 9.

Abstract

Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-C]glucose and [N]leucine, confirming the formation of [C,N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.

摘要

厌氧微生物代谢驱动着全球生态系统、宿主-微生物相互作用和工业应用中的关键功能,但仍未得到明确界定。在这里,我们提出了一种通用的方法,利用病原体艰难梭菌(一种能发酵氨基酸和碳水化合物的梭状芽胞杆菌)来详细描述专性厌氧菌的细胞代谢。用可发酵的 C 底物培养艰难梭菌,进行高分辨率魔角旋转核磁共振(NMR)光谱分析,为病原体的基因组规模代谢进行动态通量平衡分析(dFBA)。分析确定了氧化和支持还原途径的动态招募,以及高效能量生成、氮处理和生物量生成所需的高通量氨基酸和糖酵解代谢的整合。模型预测为一种利用 C NMR 光谱的灵敏度来同时跟踪[U-C]葡萄糖和[N]亮氨酸从细胞碳和氮流的方法提供了信息,证实了[C,N]丙氨酸的形成。研究结果确定了艰难梭菌在肠道生态系统中快速定植和扩张所使用的代谢策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3828/10154198/022c6a9de803/41589_2023_1275_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验