Pomeranz Lisa, Li Rosemary, Yu Xiaofei, Kelly Leah, Hassanzadeh Gholamreza, Molina Henrik, Gross Daniel, Brier Matthew, Vaisey George, Wang Putianqi, Jimenez-Gonzalez Maria, Garcia-Ocana Adolfo, Dordick Jonathan, Friedman Jeffrey, Stanley Sarah
Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA.
Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
bioRxiv. 2024 Apr 25:2023.06.20.545120. doi: 10.1101/2023.06.20.545120.
The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation . In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel . Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice . Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.
精确控制特定细胞群活性的能力有助于研究其生理作用,并可能提供治疗应用。虽然先前的研究表明,铁蛋白标记的离子通道的磁激活可实现细胞活性的细胞特异性调节,但构建体的大尺寸使得腺相关病毒(AAV)(基因治疗的首选载体)的使用变得不切实际。此外,一直缺乏产生足够强度磁场的简单方法。为此,我们首先生成了一种新型抗铁蛋白纳米抗体,当它与瞬时受体电位阳离子通道亚家族V成员1(TRPV1)融合时,能使该通道直接与小鼠和人类细胞中的内源性铁蛋白结合。这种较小的构建体可以通过单一AAV进行递送,并且我们验证了它能够有力地实现磁诱导细胞激活。同时,我们开发了一种能够控制纳米抗体标记通道的简单台式电磁铁。最后,我们表明,通过AAV将这些新构建体递送至胰腺β细胞,并结合台式磁场递送,可刺激葡萄糖刺激的胰岛素释放,从而改善小鼠的葡萄糖耐量。总之,新型抗铁蛋白纳米抗体、纳米抗体 - TRPV1构建体和新硬件提高了磁遗传学在动物乃至潜在人类中的应用价值。