Suppr超能文献

术前计算机断层扫描放射组学模型预测胰腺神经内分泌肿瘤患者无病生存。

A preoperative computed tomography radiomics model to predict disease-free survival in patients with pancreatic neuroendocrine tumors.

机构信息

Department of Diagnostic and Interventional Imaging, APHP, Hôpital Cochin, Paris F-75014, France.

Faculté de Médecine, Université Paris Cité, Paris F-75006, France.

出版信息

Eur J Endocrinol. 2023 Oct 17;189(4):476-484. doi: 10.1093/ejendo/lvad130.

Abstract

IMPORTANCE

Imaging has demonstrated capabilities in the diagnosis of pancreatic neuroendocrine tumors (pNETs), but its utility for prognostic prediction has not been elucidated yet.

OBJECTIVE

The aim of this study was to build a radiomics model using preoperative computed tomography (CT) data that may help predict recurrence-free survival (RFS) or OS in patients with pNET.

DESIGN

We performed a retrospective observational study in a cohort of French patients with pNETs.

PARTICIPANTS

Patients with surgically resected pNET and available CT examinations were included.

INTERVENTIONS

Radiomics features of preoperative CT data were extracted using 3D-Slicer® software with manual segmentation. Discriminant features were selected with penalized regression using least absolute shrinkage and selection operator method with training on the tumor Ki67 rate (≤2 or >2). Selected features were used to build a radiomics index ranging from 0 to 1.

OUTCOME AND MEASURE

A receiving operator curve was built to select an optimal cutoff value of the radiomics index to predict patient RFS and OS. Recurrence-free survival and OS were assessed using Kaplan-Meier analysis.

RESULTS

Thirty-seven patients (median age, 61 years; 20 men) with 37 pNETs (grade 1, 21/37 [57%]; grade 2, 12/37 [32%]; grade 3, 4/37 [11%]) were included. Patients with a radiomics index >0.4 had a shorter median RFS (36 months; range: 1-133) than those with a radiomics index ≤0.4 (84 months; range: 9-148; P = .013). No associations were found between the radiomics index and OS (P = .86).

摘要

重要性

影像学在胰腺神经内分泌肿瘤(pNET)的诊断中具有一定作用,但它在预后预测方面的应用尚未阐明。

目的

本研究旨在构建一个基于术前计算机断层扫描(CT)数据的放射组学模型,以帮助预测 pNET 患者的无复发生存率(RFS)或总生存期(OS)。

设计

我们在法国的一组 pNET 患者中进行了回顾性观察性研究。

参与者

纳入接受手术切除且有 CT 检查的 pNET 患者。

干预措施

使用 3D-Slicer®软件进行术前 CT 数据的放射组学特征提取,采用带有最小绝对值收缩和选择算子(LASSO)惩罚回归的方法进行手动分割。使用 Ki67 率(≤2 或>2)对训练组的判别特征进行选择。选择的特征用于构建一个范围在 0 到 1 之间的放射组学指数。

结果和测量

绘制接受者操作特征曲线,以选择放射组学指数的最佳截断值来预测患者的 RFS 和 OS。使用 Kaplan-Meier 分析评估 RFS 和 OS。

结果

共纳入 37 例(中位年龄 61 岁;20 例男性)患者的 37 个 pNET(G1,21/37 [57%];G2,12/37 [32%];G3,4/37 [11%])。放射组学指数>0.4 的患者中位 RFS 较短(36 个月;范围:1-133),而放射组学指数≤0.4 的患者中位 RFS 较长(84 个月;范围:9-148;P=0.013)。未发现放射组学指数与 OS 之间存在关联(P=0.86)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验