Lin Jiaqing, Li Zhaopu, Jiang Wei, Li Yang, Zhu Wei, Yang Shixiong, Yang Kun
Department of General Surgery, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432000, Hubei, China.
Medical College, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
Int J Colorectal Dis. 2025 Mar 31;40(1):78. doi: 10.1007/s00384-025-04872-3.
We aim to construct and verify a model combining radiomic and clinical data to predict early mortality in patients with colorectal perforation in a two-center study.
Data from 147 patients at Xiaogan Central Hospital (2014-2024) and 52 patients at Southern Hospital of Southern Medical University (2021-2023) were collected for model training and validation. Univariate and multivariate analyses were performed to identify risk factors associated with mortality. Radiomic characteristics from CT scans were extracted via least absolute shrinkage and selection operator (LASSO) regression to construct an imaging score. A nomogram was developed by integrating the findings from the multivariate analysis. Predictive performance was evaluated via the area under the receiver operating characteristic curve (AUC), and clinical utility was assessed via decision curve analysis (DCA).
Univariate analysis highlighted age, ASA classification, shock index, rad-score, white blood cell (WBC) count, neutrophil (N) and lymphocyte (L) counts, sodium (Na), creatinine (Cr), and procalcitonin (PCT) as significant prognostic indicators for mortality (p < 0.05). Multivariate analysis confirmed age, ASA classification, PCT, and rad-score as independent prognostic factors. The radiomic combined with clinical characteristics nomogram (RCCCN) includes four variables: the patient's age, ASA classification, PCT level, and rad-score. The RCCCN model demonstrated excellent predictive performance for mortality risk in the validation cohort (AUC: 0.92, 95% CI: 0.84-0.99) with good calibration.
A nomogram combining radiomic features and clinical characteristics effectively predicts mortality in patients with colorectal perforation, providing a valuable tool for clinical decision-making and patient management.
在一项两中心研究中,我们旨在构建并验证一个结合放射组学和临床数据的模型,以预测结直肠穿孔患者的早期死亡率。
收集了孝感市中心医院147例患者(2014 - 2024年)和南方医科大学南方医院52例患者(2021 - 2023年)的数据用于模型训练和验证。进行单因素和多因素分析以确定与死亡率相关的危险因素。通过最小绝对收缩和选择算子(LASSO)回归从CT扫描中提取放射组学特征,以构建影像评分。通过整合多因素分析的结果开发了列线图。通过受试者操作特征曲线(AUC)下面积评估预测性能,并通过决策曲线分析(DCA)评估临床实用性。
单因素分析突出显示年龄、美国麻醉医师协会(ASA)分级、休克指数、放射学评分、白细胞(WBC)计数、中性粒细胞(N)和淋巴细胞(L)计数、钠(Na)、肌酐(Cr)和降钙素原(PCT)是死亡率的重要预后指标(p < 0.05)。多因素分析证实年龄、ASA分级、PCT和放射学评分是独立的预后因素。放射组学与临床特征列线图(RCCCN)包括四个变量:患者年龄、ASA分级、PCT水平和放射学评分。RCCCN模型在验证队列中对死亡风险表现出优异的预测性能(AUC:0.92,95%CI:0.84 - 0.99),且校准良好。
一个结合放射组学特征和临床特征的列线图能有效预测结直肠穿孔患者的死亡率,为临床决策和患者管理提供了一个有价值的工具。