Suppr超能文献

探索钙循环与甲烷双重整相结合以增强碳捕获与利用的挑战。

Exploring the Challenges of Calcium Looping Integrated with Methane Bireforming for Enhanced Carbon Capture and Utilization.

作者信息

Law Zhi Xuan, Tsai De-Hao

机构信息

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C.

出版信息

Langmuir. 2023 Oct 17;39(41):14782-14790. doi: 10.1021/acs.langmuir.3c02217. Epub 2023 Oct 3.

Abstract

The urgent need to mitigate greenhouse gas emissions and combat climate change has driven research in carbon capture and utilization (CCU) technologies. Among these, calcium looping (CaL) has emerged as a prominent candidate for CO capture. This study aimed to explore the novel integration of CaL with methane bireforming (BRM) using CaO-Ni/CeO as dual-function material (DFM) and investigated the challenges and opportunities associated with the process. Implementing a calcium looping-bireforming (CaL-BRM) process revealed distinct differences compared to methane dry reforming (DRM). Notably, methane conversion occurred at higher temperatures, likely due to competition with the formation of Ca(OH). Meanwhile, the conversion of CO was delayed, possibly because hydroxide species on the CaO surfaces hindered the availability of CO for methane reforming. To address these challenges, Ni/CeO and CaO-Ni/CeO catalysts were employed in conventional catalytic gas-phase BRM and methane steam reforming (SRM) reactions. The results demonstrated that the presence of CaO significantly influenced BRM efficiency due to the Ca(OH) formation, as was evident by the results of the characterization on the postreaction catalysts and the parallel study of SRM. This study contributes valuable insights into the feasibility and potential of CaL-BRM, advancing the development of sustainable CCU technologies.

摘要

减轻温室气体排放和应对气候变化的迫切需求推动了碳捕获与利用(CCU)技术的研究。其中,钙循环(CaL)已成为二氧化碳捕获的一个突出候选技术。本研究旨在探索使用CaO-Ni/CeO作为双功能材料(DFM)将CaL与甲烷双重整(BRM)进行新型整合,并研究该过程相关的挑战和机遇。实施钙循环-双重整(CaL-BRM)过程与甲烷干重整(DRM)相比显示出明显差异。值得注意的是,甲烷转化在较高温度下发生,这可能是由于与Ca(OH)形成的竞争。同时,CO的转化被延迟,这可能是因为CaO表面的氢氧化物物种阻碍了用于甲烷重整的CO的可用性。为应对这些挑战,在传统催化气相BRM和甲烷蒸汽重整(SRM)反应中使用了Ni/CeO和CaO-Ni/CeO催化剂。结果表明,由于Ca(OH)的形成,CaO的存在显著影响了BRM效率,这在反应后催化剂的表征结果和SRM的平行研究中很明显。本研究为CaL-BRM的可行性和潜力提供了有价值的见解,推动了可持续CCU技术的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验