Tian Sicong, Yan Feng, Zhang Zuotai, Jiang Jianguo
School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
Sci Adv. 2019 Apr 12;5(4):eaav5077. doi: 10.1126/sciadv.aav5077. eCollection 2019 Apr.
Closing the anthropogenic carbon cycle is one important strategy to combat climate change, and requires the chemistry to effectively combine CO capture with its conversion. Here, we propose a novel in situ CO utilization concept, calcium-looping reforming of methane, to realize the capture and conversion of CO in one integrated chemical process. This process couples the calcium-looping CO capture and the CH dry reforming reactions in the CaO-Ni bifunctional sorbent-catalyst, where the CO captured by CaO is reduced in situ by CH to CO, a reaction catalyzed by catalyzed by the adjacent metallic Ni. The process coupling scheme exhibits excellent decarbonation kinetics by exploiting Le Chatelier's principle to shift reaction equilibrium through continuous conversion of CO, and results in an energy consumption 22% lower than that of conventional CH dry reforming for CO utilization. The proposed CO utilization concept offers a promising option to recycle carbon directly at large CO stationary sources in an energy-efficient manner.
闭合人为碳循环是应对气候变化的一项重要策略,这需要化学方法有效地将二氧化碳捕集与转化相结合。在此,我们提出一种新颖的原位二氧化碳利用概念——甲烷钙循环重整,以在一个集成化学过程中实现二氧化碳的捕集与转化。该过程将钙循环二氧化碳捕集与氧化钙-镍双功能吸附剂-催化剂中的甲烷干重整反应相结合,其中氧化钙捕集的二氧化碳被甲烷原位还原为一氧化碳,此反应由相邻的金属镍催化。该过程耦合方案通过利用勒夏特列原理,通过二氧化碳的连续转化来移动反应平衡,展现出优异的脱碳动力学,并且与传统的用于二氧化碳利用的甲烷干重整相比,能耗降低了22%。所提出的二氧化碳利用概念为在大型固定二氧化碳源处以节能方式直接循环利用碳提供了一个有前景的选择。