Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States.
Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
ACS Infect Dis. 2023 Nov 10;9(11):2282-2298. doi: 10.1021/acsinfecdis.3c00341. Epub 2023 Oct 3.
The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of () growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against . The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in and were bactericidal against during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound and identified resistant isolates with mutations in genes required for coenzyme F biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.
耐多药结核病病例的增加突显出迫切需要开发新的结核病治疗策略。在此,我们报告了一系列含有 3-硫-1,2,4-三唑部分的新化合物的发现和合成,这些化合物显示出对 ()生长和存活的抑制作用。构效关系研究使我们确定了几种具有低微摩尔至纳摩尔抑制活性的有效类似物,特别是针对 。在哺乳动物细胞中,有效的浓度需要在 100 倍以上,而在感染巨噬细胞时对 具有杀菌作用。在探索性的 ADME 研究中,我们观察到 ADME 特征不佳,这促使我们确定可能的代谢缺陷以进一步优化。我们对作用机制的初步研究表明,该系列不涉及许多表型筛选中出现的混杂靶标。我们用纳米摩尔有效含硝基化合物 选择了耐药突变体,并鉴定了需要辅酶 F 生物合成和硝基还原酶 Ddn 的基因的耐药分离株。这表明,芳香硝基-1,2,4-三唑基吡啶通过 F 依赖性 Ddn 活性被激活,类似于含硝基的 TB 药物 pretomanid。我们能够使用含有非硝基基团的化合物避免对 F 依赖性 Ddn 活性的需求,确定了一个需要修饰的关键特征,以避免这种主要的耐药机制。这些研究为开发治疗结核病的新型 1,2,4-三唑类化合物奠定了基础。