文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Lipid-based nanoparticles for cancer immunotherapy.

作者信息

Fan Shumin, Han Huize, Yan Zhicheng, Lu Yao, He Bing, Zhang Qiang

机构信息

Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China.

出版信息

Med Rev (2021). 2023 Aug 17;3(3):230-269. doi: 10.1515/mr-2023-0020. eCollection 2023 Jun.


DOI:10.1515/mr-2023-0020
PMID:37789955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10542882/
Abstract

As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/1a32dadc4349/j_mr-2023-0020_fig_009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/fe2280f55a01/j_mr-2023-0020_fig_001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/90dd82f9aa71/j_mr-2023-0020_fig_002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/ae608b22cc96/j_mr-2023-0020_fig_003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/b2eb03a4b56d/j_mr-2023-0020_fig_004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/4e8b7440887c/j_mr-2023-0020_fig_005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/ccbbfa9b9ab5/j_mr-2023-0020_fig_006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/4c464e30a420/j_mr-2023-0020_fig_007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/472600a6de70/j_mr-2023-0020_fig_008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/1a32dadc4349/j_mr-2023-0020_fig_009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/fe2280f55a01/j_mr-2023-0020_fig_001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/90dd82f9aa71/j_mr-2023-0020_fig_002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/ae608b22cc96/j_mr-2023-0020_fig_003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/b2eb03a4b56d/j_mr-2023-0020_fig_004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/4e8b7440887c/j_mr-2023-0020_fig_005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/ccbbfa9b9ab5/j_mr-2023-0020_fig_006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/4c464e30a420/j_mr-2023-0020_fig_007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/472600a6de70/j_mr-2023-0020_fig_008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/10542882/1a32dadc4349/j_mr-2023-0020_fig_009.jpg

相似文献

[1]
Lipid-based nanoparticles for cancer immunotherapy.

Med Rev (2021). 2023-8-17

[2]
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[3]
Nano-Immune-Engineering Approaches to Advance Cancer Immunotherapy: Lessons from Ultra-pH-Sensitive Nanoparticles.

Acc Chem Res. 2020-11-17

[4]
The Application of Nanotechnology in Immunotherapy based Combinations for Cancer Treatment.

Recent Pat Anticancer Drug Discov. 2023

[5]
Nanoparticle-Based Nanomedicines to Promote Cancer Immunotherapy: Recent Advances and Future Directions.

Small. 2019-3-25

[6]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[7]
Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects.

Biomed Pharmacother. 2023-1

[8]
Nano-immunotherapy for each stage of cancer cellular immunity: which, why, and what?

Theranostics. 2021-6-1

[9]
Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.

Nat Rev Clin Oncol. 2020-2-7

[10]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

引用本文的文献

[1]
Updates on cancer vaccines in brain cancer: Advances in neuroblastoma, delivery systems, and emerging technologies.

Hum Vaccin Immunother. 2025-12

[2]
Advances in cancer immunotherapy: historical perspectives, current developments, and future directions.

Mol Cancer. 2025-5-7

[3]
LncRNA FAM30A Suppresses Proliferation and Metastasis of Colorectal Carcinoma by Blocking the JAK-STAT Signalling.

J Cell Mol Med. 2025-2

本文引用的文献

[1]
Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy.

Int J Pharm. 2023-3-5

[2]
Cancer nanomedicine.

Nat Rev Cancer. 2022-10

[3]
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy.

Nat Rev Immunol. 2023-2

[4]
Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.

Nat Nanotechnol. 2022-8

[5]
Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts.

Nat Commun. 2022-5-19

[6]
A deep tumor penetration nanoplatform for glycolysis inhibition and antimetastasis of breast cancer.

J Mater Chem B. 2022-6-8

[7]
Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.

Nat Nanotechnol. 2022-7

[8]
Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy.

Adv Drug Deliv Rev. 2022-7

[9]
Application of lipid nanovesicle drug delivery system in cancer immunotherapy.

J Nanobiotechnology. 2022-5-6

[10]
Bacterial membrane vesicles for vaccine applications.

Adv Drug Deliv Rev. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索