Suppr超能文献

一种用于改善基层医疗中基于家庭的预防性干预措施实施监测的机器学习方法。

A machine learning approach to improve implementation monitoring of family-based preventive interventions in primary care.

作者信息

Berkel Cady, Knox Dillon C, Flemotomos Nikolaos, Martinez Victor R, Atkins David C, Narayanan Shrikanth S, Rodriguez Lizeth Alonso, Gallo Carlos G, Smith Justin D

机构信息

College of Health Solutions, Arizona State University, Phoenix, AZ, USA.

Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, REACH Institute, Arizona State University, Tempe, AZ, USA.

出版信息

Implement Res Pract. 2023 Jul 25;4:26334895231187906. doi: 10.1177/26334895231187906. eCollection 2023 Jan-Dec.

Abstract

BACKGROUND

Evidence-based parenting programs effectively prevent the onset and escalation of child and adolescent behavioral health problems. When programs have been taken to scale, declines in the quality of implementation diminish intervention effects. Gold-standard methods of implementation monitoring are cost-prohibitive and impractical in resource-scarce delivery systems. Technological developments using computational linguistics and machine learning offer an opportunity to assess fidelity in a low burden, timely, and comprehensive manner.

METHODS

In this study, we test two natural language processing (NLP) methods [i.e., Term Frequency-Inverse Document Frequency (TF-IDF) and Bidirectional Encoder Representations from Transformers (BERT)] to assess the delivery of the Family Check-Up 4 Health (FCU4Health) program in a type 2 hybrid effectiveness-implementation trial conducted in primary care settings that serve primarily Latino families. We trained and evaluated models using 116 English and 81 Spanish-language transcripts from the 113 families who initiated FCU4Health services. We evaluated the concurrent validity of the TF-IDF and BERT models using observer ratings of program sessions using the COACH measure of competent adherence. Following the Implementation Cascade model, we assessed predictive validity using multiple indicators of parent engagement, which have been demonstrated to predict improvements in parenting and child outcomes.

RESULTS

Both TF-IDF and BERT ratings were significantly associated with observer ratings and engagement outcomes. Using mean squared error, results demonstrated improvement over baseline for observer ratings from a range of 0.83-1.02 to 0.62-0.76, resulting in an average improvement of 24%. Similarly, results demonstrated improvement over baseline for parent engagement indicators from a range of 0.81-27.3 to 0.62-19.50, resulting in an approximate average improvement of 18%.

CONCLUSIONS

These results demonstrate the potential for NLP methods to assess implementation in evidence-based parenting programs delivered at scale. Future directions are presented.

TRIAL REGISTRATION

NCT03013309 ClinicalTrials.gov.

摘要

背景

基于证据的育儿项目能有效预防儿童和青少年行为健康问题的发生及升级。当项目扩大规模时,实施质量的下降会削弱干预效果。实施监测的金标准方法成本高昂,在资源稀缺的服务系统中不切实际。利用计算语言学和机器学习的技术发展提供了一个以低负担、及时且全面的方式评估保真度的机会。

方法

在本研究中,我们测试了两种自然语言处理(NLP)方法[即词频 - 逆文档频率(TF - IDF)和来自变换器的双向编码器表示(BERT)],以评估在主要为拉丁裔家庭服务的初级保健机构中进行的2型混合有效性 - 实施试验中家庭健康检查4(FCU4Health)项目的实施情况。我们使用来自113个启动FCU4Health服务家庭的116份英文和81份西班牙语文本记录对模型进行训练和评估。我们使用胜任依从性的COACH测量法,通过对项目环节的观察者评分来评估TF - IDF和BERT模型的同时效度。遵循实施级联模型,我们使用父母参与的多个指标评估预测效度,这些指标已被证明可预测育儿和儿童结局的改善情况。

结果

TF - IDF和BERT评分均与观察者评分及参与结局显著相关。使用均方误差,结果表明观察者评分从基线的0.83 - 1.02提高到0.62 - 0.76,平均提高了24%。同样,结果表明父母参与指标从基线的0.81 - 27.3提高到0.62 - 19.50,平均提高了约18%。

结论

这些结果证明了NLP方法在评估大规模实施的基于证据的育儿项目实施情况方面的潜力。还提出了未来的方向。

试验注册

NCT03013309 ClinicalTrials.gov。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8516/10375039/067a086e41c4/10.1177_26334895231187906-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验