Suppr超能文献

利用自然语言处理(NLP)技术实现指导性数字认知行为疗法(GdCBT)中教练实施保真度评估的自动化。

Capitalizing on natural language processing (NLP) to automate the evaluation of coach implementation fidelity in guided digital cognitive-behavioral therapy (GdCBT).

作者信息

Zainal Nur Hani, Eckhardt Regina, Rackoff Gavin N, Fitzsimmons-Craft Ellen E, Rojas-Ashe Elsa, Barr Taylor Craig, Funk Burkhardt, Eisenberg Daniel, Wilfley Denise E, Newman Michelle G

机构信息

Department of Psychology, National University of Singapore (NUS), Singapore.

Technical University of Munich, TUM School of Life Sciences, Freising, Germany.

出版信息

Psychol Med. 2025 Apr 2;55:e106. doi: 10.1017/S0033291725000340.

Abstract

BACKGROUND

As the use of guided digitally-delivered cognitive-behavioral therapy (GdCBT) grows, pragmatic analytic tools are needed to evaluate coaches' implementation fidelity.

AIMS

We evaluated how natural language processing (NLP) and machine learning (ML) methods might automate the monitoring of coaches' implementation fidelity to GdCBT delivered as part of a randomized controlled trial.

METHOD

Coaches served as guides to 6-month GdCBT with 3,381 assigned users with or at risk for anxiety, depression, or eating disorders. CBT-trained and supervised human coders used a rubric to rate the implementation fidelity of 13,529 coach-to-user messages. NLP methods abstracted data from text-based coach-to-user messages, and 11 ML models predicting coach implementation fidelity were evaluated.

RESULTS

Inter-rater agreement by human coders was excellent (intra-class correlation coefficient = .980-.992). Coaches achieved behavioral targets at the start of the GdCBT and maintained strong fidelity throughout most subsequent messages. Coaches also avoided prohibited actions (e.g. reinforcing users' avoidance). Sentiment analyses generally indicated a higher frequency of coach-delivered positive than negative sentiment words and predicted coach implementation fidelity with acceptable performance metrics (e.g. area under the receiver operating characteristic curve [AUC] = 74.48%). The final best-performing ML algorithms that included a more comprehensive set of NLP features performed well (e.g. AUC = 76.06%).

CONCLUSIONS

NLP and ML tools could help clinical supervisors automate monitoring of coaches' implementation fidelity to GdCBT. These tools could maximize allocation of scarce resources by reducing the personnel time needed to measure fidelity, potentially freeing up more time for high-quality clinical care.

摘要

背景

随着数字化交付的认知行为疗法(GdCBT)的使用日益增加,需要实用的分析工具来评估指导者的实施保真度。

目的

我们评估了自然语言处理(NLP)和机器学习(ML)方法如何自动监测指导者对作为随机对照试验一部分提供的GdCBT的实施保真度。

方法

指导者为3381名患有焦虑症、抑郁症或饮食失调症或有相关风险的用户提供为期6个月的GdCBT指导。经过认知行为疗法培训和监督的人工编码员使用评分标准对13529条指导者发给用户的信息的实施保真度进行评分。NLP方法从基于文本的指导者发给用户的信息中提取数据,并评估了11个预测指导者实施保真度的ML模型。

结果

人工编码员之间的评分者间一致性非常好(组内相关系数=0.980-0.992)。指导者在GdCBT开始时实现了行为目标,并在随后的大多数信息中保持了较高的保真度。指导者还避免了被禁止的行为(例如强化用户的回避行为)。情感分析通常表明,指导者传递的积极情感词汇的频率高于消极情感词汇,并以可接受的性能指标预测指导者的实施保真度(例如受试者工作特征曲线下面积[AUC]=74.48%)。包含更全面的NLP特征集的最终表现最佳的ML算法表现良好(例如AUC=76.06%)。

结论

NLP和ML工具可以帮助临床监督者自动监测指导者对GdCBT的实施保真度。这些工具可以通过减少测量保真度所需的人员时间来最大限度地分配稀缺资源,从而有可能为高质量的临床护理腾出更多时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9020/12094662/7d5197b01ede/S0033291725000340_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验