Suppr超能文献

15q 重复综合征的单细胞分析揭示了自闭症中发育和出生后的分子变化。

Single cell analysis of dup15q syndrome reveals developmental and postnatal molecular changes in autism.

作者信息

Perez Yonatan, Velmeshev Dmitry, Wang Li, White Matthew, Siebert Clara, Baltazar Jennifer, Dutton Natalia Garcia, Wang Shaohui, Haeussler Maximilian, Chamberlain Stormy, Kriegstein Arnold

机构信息

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

bioRxiv. 2023 Sep 22:2023.09.22.559056. doi: 10.1101/2023.09.22.559056.

Abstract

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.

摘要

15号染色体重复(dup15q)综合征是自闭症谱系障碍(ASD)最常见的遗传病因。与特发性自闭症相比,由于遗传和表型同质性更高,dup15q综合征为研究ASD机制提供了一个明确的研究背景。以往的大量基因表达研究已经确定了ASD中共同的分子变化。然而,不同自闭症亚型之间细胞类型特异性变化如何比较以及它们在发育过程中如何变化,在很大程度上尚不清楚。在本研究中,我们对来自患者诱导多能干细胞(iPSCs)的dup15q皮质类器官以及患者死后的脑样本进行了单细胞和单细胞核mRNA测序。我们发现了细胞类型特异性失调的程序,这些程序是dup15q发病机制的基础,我们通过使用脑组织样本的空间分辨转录组学对其进行了验证。我们发现胎儿期类器官中深层神经元的身份退化和易损性,并强调了死后上层神经元在突触信号传导方面分子负担的增加,这一发现在特发性ASD和dup15q综合征中都有体现。对类器官和死后兴奋性神经元的基因共表达网络分析揭示了富含自闭症风险基因的模块。类器官发育模块通过染色质重塑参与转录调控,而死后模块与突触传递和可塑性相关。这些发现揭示了大脑发育过程中ASD细胞易损性的变化情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97d6/10543006/b9abfa07cf80/nihpp-2023.09.22.559056v1-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验