Younkin Gordon C, Alani Martin L, Capador Anamaría Páez, Fischer Hillary D, Mirzaei Mahdieh, Hastings Amy P, Agrawal Anurag A, Jander Georg
Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA.
Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853.
bioRxiv. 2023 Nov 21:2023.09.19.558517. doi: 10.1101/2023.09.19.558517.
The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field.CYP87A126 initiates cardiac glycoside biosynthesis via sterol side chain cleavage, and CYP716A418 has a role in cardiac glycoside hydroxylation. In CYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of the cardiac glycoside biosynthetic pathway and demonstrate that cardiac glycoside production allows to escape from some, but not all, specialist herbivores.
植物与昆虫之间的化学军备竞赛是生物多样性产生和维持的基础。我们探究了在一个已有良好防御机制的植物谱系中,一种新型防御化合物的进化如何影响与多种食草动物的相互作用。以十字花科植物为模型,该科植物既产生祖传的芥子油苷,又产生新型强心苷。我们分析了基因表达,以确定强心苷生物合成酶,并通过异源表达和CRISPR/Cas9敲除对这些酶进行了表征。利用缺乏强心苷的植株系,我们在实验室和田间进行了昆虫实验。CYP87A126通过甾醇侧链裂解启动强心苷生物合成,而CYP716A418在强心苷羟基化中起作用。在CYP87A126敲除植株系中,强心苷的产生被消除。对这些植株系进行的实验室实验表明,强心苷是对两种耐受芥子油苷的专食性食草动物的高效防御,但在田间并不能抵御所有以十字花科植物为食的专食性食草动物。强心苷对两种广泛的多食性食草动物的影响较小或没有影响。这些结果开始阐明强心苷的生物合成途径,并表明强心苷的产生使该植物能够躲避一些但不是所有的专食性食草动物。