Suppr超能文献

强心苷保护野芥(Erysimum cheiranthoides)免受一些,但不是所有,含硫葡萄糖苷适应的食草动物的侵害。

Cardiac glycosides protect wormseed wallflower (Erysimum cheiranthoides) against some, but not all, glucosinolate-adapted herbivores.

机构信息

Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA.

Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.

出版信息

New Phytol. 2024 Jun;242(6):2719-2733. doi: 10.1111/nph.19534. Epub 2024 Jan 17.

Abstract

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

摘要

植物与昆虫之间的化学军备竞赛是生物多样性产生和维持的基础。我们想知道,在一个已经有良好防御机制的植物谱系中,一种新型防御化合物的进化如何影响与多种草食性动物的相互作用。樱草(十字花科)既是祖先的硫代葡萄糖苷又是新型的强心苷的来源,被用作模型。我们通过分析基因表达来鉴定樱草中的强心苷生物合成酶,并通过异源表达和 CRISPR/Cas9 敲除来对这些酶进行表征。使用樱草强心苷缺陷株系,我们在实验室和野外进行了昆虫实验。EcCYP87A126 通过甾醇侧链裂解启动强心苷生物合成,而 EcCYP716A418 在强心苷羟化中起作用。在 EcCYP87A126 敲除株系中,强心苷的产生被消除。这些株系的实验室实验表明,强心苷是两种对硫代葡萄糖苷耐受的专食性草食动物的高效防御物质,但在野外并不能保护樱草免受所有的十字花科专食性草食动物的侵害。强心苷对两种广泛的一般性草食动物几乎没有影响。这些结果开始阐明樱草的强心苷生物合成途径,并在体内证明,强心苷的产生使樱草能够逃避一些,但不是所有的专食性草食动物。

相似文献

5
Acropetal and basipetal cardenolide transport in Erysimum cheiranthoides (wormseed wallflower).
Phytochemistry. 2021 Dec;192:112965. doi: 10.1016/j.phytochem.2021.112965. Epub 2021 Oct 2.

引用本文的文献

2
Ipecac alkaloid biosynthesis in two evolutionarily distant plants.
Nat Chem Biol. 2025 Jun 3. doi: 10.1038/s41589-025-01926-z.
3
Success and limitations in adaptation of Fast-TrACC tissue culture-independent transformation in coffee, cotton, and tree tobacco.
PLoS One. 2025 May 15;20(5):e0318324. doi: 10.1371/journal.pone.0318324. eCollection 2025.
4
Identification of UDP-dependent glycosyltransferases in the wallflower cardenolide biosynthesis pathway.
J Biol Chem. 2025 Apr 30;301(6):108565. doi: 10.1016/j.jbc.2025.108565.
5
Genome and Tissue-Specific Transcriptome of the Tropical Milkweed ().
Plant Direct. 2025 Mar 18;9(3):e70031. doi: 10.1002/pld3.70031. eCollection 2025 Mar.
6
Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development.
J Plant Res. 2025 Mar;138(2):377-388. doi: 10.1007/s10265-024-01614-4. Epub 2025 Feb 4.
7
Testing intra-species variation in allocation to growth and defense in rubber tree ().
PeerJ. 2024 Aug 8;12:e17877. doi: 10.7717/peerj.17877. eCollection 2024.
8
Four enzymes control natural variation in the steroid core of cardenolides.
bioRxiv. 2024 Apr 11:2024.04.10.588904. doi: 10.1101/2024.04.10.588904.

本文引用的文献

1
Promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants.
Nat Plants. 2023 Oct;9(10):1607-1617. doi: 10.1038/s41477-023-01515-9. Epub 2023 Sep 18.
2
A cytochrome P450 CYP87A4 imparts sterol side-chain cleavage in digoxin biosynthesis.
Nat Commun. 2023 Jul 8;14(1):4042. doi: 10.1038/s41467-023-39719-4.
4
Horizontally transferred genes as RNA interference targets for aphid and whitefly control.
Plant Biotechnol J. 2023 Apr;21(4):754-768. doi: 10.1111/pbi.13992. Epub 2023 Jan 25.
5
Testing hypotheses of a coevolutionary key innovation reveals a complex suite of traits involved in defusing the mustard oil bomb.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2208447119. doi: 10.1073/pnas.2208447119. Epub 2022 Dec 12.
6
Search and sequence analysis tools services from EMBL-EBI in 2022.
Nucleic Acids Res. 2022 Jul 5;50(W1):W276-W279. doi: 10.1093/nar/gkac240.
7
Acropetal and basipetal cardenolide transport in Erysimum cheiranthoides (wormseed wallflower).
Phytochemistry. 2021 Dec;192:112965. doi: 10.1016/j.phytochem.2021.112965. Epub 2021 Oct 2.
8
An Independent Evolutionary Origin for Insect Deterrent Cucurbitacins in Iberis amara.
Mol Biol Evol. 2021 Oct 27;38(11):4659-4673. doi: 10.1093/molbev/msab213.
9
MSnbase, Efficient and Elegant R-Based Processing and Visualization of Raw Mass Spectrometry Data.
J Proteome Res. 2021 Jan 1;20(1):1063-1069. doi: 10.1021/acs.jproteome.0c00313. Epub 2020 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验