Suppr超能文献

利用磁共振成像数据的深度学习预测阿尔茨海默病并量化海马体的不对称性退化

Predicting Alzheimer's Disease and Quantifying Asymmetric Degeneration of the Hippocampus Using Deep Learning of Magnetic Resonance Imaging Data.

作者信息

Liu Xi, Li Hongming, Fan Yong

机构信息

Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230830. Epub 2023 Sep 1.

Abstract

In order to quantify lateral asymmetric degeneration of the hippocampus for early predicting Alzheimer's disease (AD), we develop a deep learning (DL) model to learn informative features from the hippocampal magnetic resonance imaging (MRI) data for predicting AD conversion in a time-to-event prediction modeling framework. The DL model is trained on unilateral hippocampal data with an autoencoder based regularizer, facilitating quantification of lateral asymmetry in the hippocampal prediction power of AD conversion and identification of the optimal strategy to integrate the bilateral hippocampal MRI data for predicting AD. Experimental results on MRI scans of 1307 subjects (817 for training and 490 for validation) have demonstrated that the left hippocampus can better predict AD than the right hippocampus, and an integration of the bilateral hippocampal data with the instance based DL method improved AD prediction, compared with alternative predictive modeling strategies.

摘要

为了量化海马体的侧方不对称性退化以早期预测阿尔茨海默病(AD),我们开发了一种深度学习(DL)模型,在生存时间预测建模框架下从海马体磁共振成像(MRI)数据中学习信息特征,以预测AD转化。该DL模型基于单侧海马体数据,采用基于自动编码器的正则化器进行训练,有助于量化海马体预测AD转化能力的侧方不对称性,并确定整合双侧海马体MRI数据以预测AD的最佳策略。对1307名受试者(817名用于训练,490名用于验证)的MRI扫描实验结果表明,左侧海马体比右侧海马体更能准确预测AD,与其他预测建模策略相比,基于实例的DL方法整合双侧海马体数据可提高AD预测效果。

相似文献

1
Predicting Alzheimer's Disease and Quantifying Asymmetric Degeneration of the Hippocampus Using Deep Learning of Magnetic Resonance Imaging Data.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230830. Epub 2023 Sep 1.
2
A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data.
Alzheimers Dement. 2019 Aug;15(8):1059-1070. doi: 10.1016/j.jalz.2019.02.007. Epub 2019 Jun 11.
4
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
6
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
7
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
Brain Imaging Behav. 2021 Oct;15(5):2330-2339. doi: 10.1007/s11682-020-00427-y. Epub 2021 Jan 4.
9
Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.
Neuroimage. 2015 Jan 1;104:398-412. doi: 10.1016/j.neuroimage.2014.10.002. Epub 2014 Oct 12.

本文引用的文献

1
2
EARLY PREDICTION OF ALZHEIMER'S DISEASE DEMENTIA BASED ON BASELINE HIPPOCAMPAL MRI AND 1-YEAR FOLLOW-UP COGNITIVE MEASURES USING DEEP RECURRENT NEURAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:368-371. doi: 10.1109/ISBI.2019.8759397. Epub 2019 Jul 11.
3
A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data.
Alzheimers Dement. 2019 Aug;15(8):1059-1070. doi: 10.1016/j.jalz.2019.02.007. Epub 2019 Jun 11.
4
A prognostic model of Alzheimer's disease relying on multiple longitudinal measures and time-to-event data.
Alzheimers Dement. 2018 May;14(5):644-651. doi: 10.1016/j.jalz.2017.11.004. Epub 2018 Jan 4.
5
Predicting Alzheimer's Disease Using Combined Imaging-Whole Genome SNP Data.
J Alzheimers Dis. 2015;46(3):695-702. doi: 10.3233/JAD-150164.
6
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
7
Anatomical and functional correlates of human hippocampal volume asymmetry.
Psychiatry Res. 2012 Jan 30;201(1):48-53. doi: 10.1016/j.pscychresns.2011.07.016. Epub 2012 Jan 27.
9
Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study.
Neuroimage. 2008 Jun;41(2):277-85. doi: 10.1016/j.neuroimage.2008.02.043. Epub 2008 Mar 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验