Liu Xi, Li Hongming, Fan Yong
Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230830. Epub 2023 Sep 1.
In order to quantify lateral asymmetric degeneration of the hippocampus for early predicting Alzheimer's disease (AD), we develop a deep learning (DL) model to learn informative features from the hippocampal magnetic resonance imaging (MRI) data for predicting AD conversion in a time-to-event prediction modeling framework. The DL model is trained on unilateral hippocampal data with an autoencoder based regularizer, facilitating quantification of lateral asymmetry in the hippocampal prediction power of AD conversion and identification of the optimal strategy to integrate the bilateral hippocampal MRI data for predicting AD. Experimental results on MRI scans of 1307 subjects (817 for training and 490 for validation) have demonstrated that the left hippocampus can better predict AD than the right hippocampus, and an integration of the bilateral hippocampal data with the instance based DL method improved AD prediction, compared with alternative predictive modeling strategies.
为了量化海马体的侧方不对称性退化以早期预测阿尔茨海默病(AD),我们开发了一种深度学习(DL)模型,在生存时间预测建模框架下从海马体磁共振成像(MRI)数据中学习信息特征,以预测AD转化。该DL模型基于单侧海马体数据,采用基于自动编码器的正则化器进行训练,有助于量化海马体预测AD转化能力的侧方不对称性,并确定整合双侧海马体MRI数据以预测AD的最佳策略。对1307名受试者(817名用于训练,490名用于验证)的MRI扫描实验结果表明,左侧海马体比右侧海马体更能准确预测AD,与其他预测建模策略相比,基于实例的DL方法整合双侧海马体数据可提高AD预测效果。