Section for Biomedical Image Analysis (SBIA), Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Section for Biomedical Image Analysis (SBIA), Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cognitive Neurology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Alzheimers Dement. 2019 Aug;15(8):1059-1070. doi: 10.1016/j.jalz.2019.02.007. Epub 2019 Jun 11.
INTRODUCTION: It is challenging at baseline to predict when and which individuals who meet criteria for mild cognitive impairment (MCI) will ultimately progress to Alzheimer's disease (AD) dementia. METHODS: A deep learning method is developed and validated based on magnetic resonance imaging scans of 2146 subjects (803 for training and 1343 for validation) to predict MCI subjects' progression to AD dementia in a time-to-event analysis setting. RESULTS: The deep-learning time-to-event model predicted individual subjects' progression to AD dementia with a concordance index of 0.762 on 439 Alzheimer's Disease Neuroimaging Initiative testing MCI subjects with follow-up duration from 6 to 78 months (quartiles: [24, 42, 54]) and a concordance index of 0.781 on 40 Australian Imaging Biomarkers and Lifestyle Study of Aging testing MCI subjects with follow-up duration from 18 to 54 months (quartiles: [18, 36, 54]). The predicted progression risk also clustered individual subjects into subgroups with significant differences in their progression time to AD dementia (P < .0002). Improved performance for predicting progression to AD dementia (concordance index = 0.864) was obtained when the deep learning-based progression risk was combined with baseline clinical measures. DISCUSSION: Our method provides a cost effective and accurate means for prognosis and potentially to facilitate enrollment in clinical trials with individuals likely to progress within a specific temporal period.
简介:在基线时,预测哪些符合轻度认知障碍 (MCI) 标准的个体最终将进展为阿尔茨海默病 (AD) 痴呆症是具有挑战性的。
方法:开发并验证了一种基于磁共振成像扫描的深度学习方法,以在时间事件分析设置中预测 2146 名受试者(803 名用于训练,1343 名用于验证)中 MCI 受试者向 AD 痴呆症的进展。
结果:深度学习时间事件模型预测了 439 名阿尔茨海默病神经影像学倡议测试的 MCI 受试者的个体受试者向 AD 痴呆症的进展,其一致性指数为 0.762,随访时间为 6 至 78 个月(四分位数:[24,42,54]),40 名澳大利亚成像生物标志物和老龄化研究的 MCI 受试者的一致性指数为 0.781,随访时间为 18 至 54 个月(四分位数:[18,36,54])。预测的进展风险还将个体受试者聚类为亚组,这些亚组在向 AD 痴呆症进展的时间上存在显著差异(P <.0002)。当将基于深度学习的进展风险与基线临床测量相结合时,预测向 AD 痴呆症的进展(一致性指数 = 0.864)的性能得到了提高。
讨论:我们的方法为预后提供了一种具有成本效益且准确的手段,并可能有助于在特定时间段内进展的个体中招募临床试验。
Neuroimage Clin. 2020
Neuroinformatics. 2019-1
Digit Health. 2025-4-22
J Prev Alzheimers Dis. 2025-5
J Prev Alzheimers Dis. 2025-4
Actas Esp Psiquiatr. 2025-1
Alzheimers Dement. 2025-1
Neurotoxicology. 2024-12
Alzheimers Dement. 2018-4
Proc Natl Acad Sci U S A. 2018-3-28
Alzheimers Dement. 2018-1-4
J Neurosci Methods. 2017-12-26
Cancer Res. 2017-11-1
Alzheimers Res Ther. 2017-8-9