多组分金属氧化物纳米材料毒性评估的结构-活性方法。

A structure-activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials.

机构信息

Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.

出版信息

Nanoscale. 2023 Oct 20;15(40):16432-16446. doi: 10.1039/d3nr03174h.

Abstract

The increase of human and environmental exposure to engineered nanomaterials (ENMs) due to the emergence of nanotechnology has raised concerns over their safety. The challenging nature of and toxicity assessment methods for ENMs, has led to emerging techniques for ENM toxicity assessment, such as structure-activity relationship (SAR) models. Although such approaches have been extensively developed for the case of single-component nanomaterials, the case of multicomponent nanomaterials (MCNMs) has not been thoroughly addressed. In this paper, we present a SAR approach for the case metal and metal oxide MCNMs. The developed SAR framework is built using a dataset of 796 individual toxicity measurements for 340 different MCNMs, towards human cells, mammalian cells, and bacteria. The novelty of the approach lies in the multicomponent nature of the nanomaterials, as well as the size, diversity and heterogeneous nature of the dataset used. Furthermore, the approach used to calculate descriptors for surface loaded MCNMs, and the mechanistic insight provided by the model results can assist the understanding of MCNM toxicity. The developed models are able to correctly predict the toxic class of the MCNMs in the heterogeneous dataset, towards a wide range of human cells, mammalian cells and bacteria. Using the abovementioned approach, the principal toxicity pathways and mechanisms are identified, allowing a more holistic understanding of metal oxide MCNM toxicity.

摘要

由于纳米技术的出现,人类和环境接触工程纳米材料(ENMs)的数量不断增加,这引发了人们对其安全性的担忧。ENMs 的性质和毒性评估方法具有挑战性,这导致了新兴的 ENM 毒性评估技术的出现,例如结构-活性关系(SAR)模型。尽管此类方法已经在单一组分纳米材料的情况下得到了广泛的开发,但多组分纳米材料(MCNMs)的情况尚未得到彻底解决。在本文中,我们提出了一种用于金属和金属氧化物 MCNMs 的 SAR 方法。所开发的 SAR 框架是使用针对人类细胞、哺乳动物细胞和细菌的 340 种不同 MCNMs 的 796 个个体毒性测量数据集构建的。该方法的新颖之处在于纳米材料的多组分性质,以及所用数据集的大小、多样性和异质性。此外,该方法用于计算表面负载的 MCNMs 的描述符,以及模型结果提供的机制见解可以帮助理解 MCNM 毒性。所开发的模型能够正确预测异质数据集中 MCNMs 的毒性类别,适用于广泛的人类细胞、哺乳动物细胞和细菌。使用上述方法,可以确定主要的毒性途径和机制,从而更全面地理解金属氧化物 MCNM 毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索