Suppr超能文献

生态纳米毒理学:在亚细胞、种群、群落和生态系统水平上综合考虑纳米材料的危害。

Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.

机构信息

UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, USA.

出版信息

Acc Chem Res. 2013 Mar 19;46(3):813-22. doi: 10.1021/ar300069t. Epub 2012 Oct 5.

Abstract

Research into the health and environmental safety of nanotechnology has seriously lagged behind its emergence in industry. While humans have often adopted synthetic chemicals without considering ancillary consequences, the lessons learned from worldwide pollution should motivate making nanotechnology compatible with environmental concerns. Researchers and policymakers need to understand exposure and harm of engineered nanomaterials (ENMs), currently nanotechnology's main products, to influence the ENM industry toward sustainable growth. Yet, how should research proceed? Standard toxicity testing anchored in single-organism, dose-response characterizations does not adequately represent real-world exposure and receptor scenarios and their complexities. Our approach is different: it derives from ecology, the study of organisms' interactions with each other and their environments. Our approach involves the characterization of ENMs and the mechanistic assessment of their property-based effects. Using high throughput/content screening (HTS/HCS) with cells or environmentally-relevant organisms, we measure the effects of ENMs on a subcellular or population level. We then relate those effects to mechanisms within dynamic energy budget (DEB) models of growth and reproduction. We reconcile DEB model predictions with experimental data on organism and population responses. Finally, we use microcosm studies to measure the potential for community- or ecosystem-level effects by ENMs that are likely to be produced in large quantities and for which either HTS/HCS or DEB modeling suggest their potential to harm populations and ecosystems. Our approach accounts for ecological interactions across scales, from within organisms to whole ecosystems. Organismal ENM effects, if propagated through populations, can alter communities comprising multiple populations (e.g., plant, fish, bacteria) within food webs. Altered communities can change ecosystem services: processes that cycle carbon, nutrients, and energy, and regulate Earth's waters and atmosphere. We have shown ENM effects on populations, communities, and ecosystems, including transfer and concentration of ENMs through food chains, for a range of exposure scenarios; in many cases, we have identified subcellular ENM effects mechanisms. To keep pace with ENM development, rapid assessment of the mechanisms of ENM effects and modeling are needed. DEB models provide a method for mathematically representing effects such as the generation of reactive oxygen species and their associated damage. These models account for organism-level effects on metabolism and reproduction and can predict outcomes of ENM-organism combinations on populations; those predictions can then suggest ENM characteristics to be avoided. HTS/HCS provides a rapid assessment tool of the ENM chemical characteristics that affect biological systems; such results guide and expand DEB model expressions of hazard. Our approach addresses ecological processes in both natural and managed ecosystems (agriculture) and has the potential to deliver timely and meaningful understanding towards environmentally sustainable nanotechnology.

摘要

对纳米技术的健康和环境安全的研究严重滞后于其在工业中的出现。虽然人类经常采用合成化学品而不考虑辅助后果,但从全球污染中吸取的教训应该促使纳米技术与环境问题相兼容。研究人员和政策制定者需要了解工程纳米材料(ENMs)的暴露和危害,目前这是纳米技术的主要产品,以影响 ENM 行业的可持续增长。然而,应该如何进行研究?基于单一生物体的毒性测试和剂量-反应特征并不能充分代表现实世界的暴露和受体情况及其复杂性。我们的方法不同:它源自生态学,即研究生物体之间及其与环境的相互作用。我们的方法涉及 ENMs 的特性描述和基于其特性的效应的机制评估。我们使用高通量/内容筛选(HTS/HCS)与细胞或与环境相关的生物体一起,测量 ENMs 对亚细胞或种群水平的影响。然后,我们将这些影响与生长和繁殖的动态能量预算(DEB)模型中的机制联系起来。我们使 DEB 模型预测与生物体和种群反应的实验数据相协调。最后,我们使用微宇宙研究来测量大量生产的 ENMs 对群落或生态系统水平的影响的潜力,并且 HTS/HCS 或 DEB 建模表明它们有可能危害种群和生态系统。我们的方法考虑了从生物体内部到整个生态系统的跨尺度的生态相互作用。如果生物体的 ENM 效应通过种群传播,则可以改变包含多个种群(例如,植物,鱼类,细菌)的群落食物链。改变的群落可以改变生态系统服务:循环碳,营养物质和能量以及调节地球的水和大气的过程。我们已经证明了 ENM 对种群,群落和生态系统的影响,包括通过食物链转移和浓缩 ENM,适用于多种暴露情况;在许多情况下,我们已经确定了亚细胞 ENM 效应机制。为了跟上 ENM 的发展步伐,需要对 ENM 效应的机制进行快速评估和建模。DEB 模型为数学表示诸如活性氧物种的产生及其相关损伤之类的效应提供了一种方法。这些模型考虑了对新陈代谢和繁殖的生物体水平的影响,并且可以预测 ENM-生物体组合对种群的结果;然后,这些预测可以提示要避免的 ENM 特征。HTS/HCS 提供了一种快速评估影响生物系统的 ENM 化学特性的工具;这样的结果指导并扩展了 DEB 模型对危害的表达。我们的方法解决了自然和管理生态系统(农业)中的生态过程,并且有可能及时提供有意义的理解,以实现环境可持续的纳米技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验