Suppr超能文献

基于机器学习的促凝细胞外囊泡条码分析用于评估癌症患者血栓诱导死亡风险的高性能评价。

Machine-Learning-Assisted Procoagulant Extracellular Vesicle Barcode Assay toward High-Performance Evaluation of Thrombosis-Induced Death Risk in Cancer Patients.

机构信息

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China.

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

出版信息

ACS Nano. 2023 Oct 24;17(20):19914-19924. doi: 10.1021/acsnano.3c04615. Epub 2023 Oct 4.

Abstract

Venous thromboembolism (VTE) is the most fatal complication in cancer patients. Unfortunately, the frequent misdiagnosis of VTE owing to the lack of accurate and efficient evaluation approaches may cause belated medical intervention and even sudden death. Herein, we present a rapid, easily operable, highly specific, and highly sensitive procoagulant extracellular vesicle barcode (PEVB) assay composed of TiO nanoflower (TiNFs) for visually evaluating VTE risk in cancer patients. TiNFs demonstrate rapid label-free EV capture capability by the synergetic effect of TiO-phospholipids molecular interactions and topological interactions between TiNFs and EVs. From ordinary plasma samples, the PEVB assay can evaluate potential VTE risk by integrating TiNFs-based EV capture and in situ EV procoagulant ability test with machine-learning-assisted clinical data analysis. We demonstrate the feasibility of this PEVB assay in VTE risk evaluation by screening 167 cancer patients, as well as the high specificity (97.1%) and high sensitivity (96.8%), fully exceeding the nonspecific and posterior traditional VTE test. Together, we proposed a TiNFs platform allowing for highly accurate and timely diagnosis of VTE in cancer patients.

摘要

静脉血栓栓塞症(VTE)是癌症患者最致命的并发症。不幸的是,由于缺乏准确和有效的评估方法,VTE 经常被误诊,这可能导致医疗干预的延迟,甚至突然死亡。在此,我们提出了一种快速、易于操作、高度特异和敏感的促凝血细胞外囊泡条码(PEVB)检测方法,该方法由 TiO 纳米花(TiNFs)组成,用于直观评估癌症患者的 VTE 风险。TiNFs 通过 TiO-磷脂分子相互作用和 TiNFs 与 EVs 之间的拓扑相互作用的协同效应,具有快速的无标记 EV 捕获能力。从普通血浆样本中,通过基于 TiNFs 的 EV 捕获和原位 EV 促凝能力测试与机器学习辅助的临床数据分析的整合,PEVB 检测可评估潜在的 VTE 风险。我们通过筛选 167 例癌症患者,证明了该 PEVB 检测方法在 VTE 风险评估中的可行性,具有很高的特异性(97.1%)和很高的敏感性(96.8%),完全超过了非特异性和传统的 VTE 检测方法。综上所述,我们提出了一个 TiNFs 平台,可用于癌症患者中 VTE 的高度准确和及时诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验