USDA-ARS Bee Research Lab , Beltsville, Maryland, USA.
Department of Biology, University of Maryland , College Park, Maryland, USA.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0102323. doi: 10.1128/aem.01023-23. Epub 2023 Oct 4.
Temperature affects growth, metabolism, and interspecific interactions in microbial communities. Within animal hosts, gut bacterial symbionts can provide resistance to parasitic infections. Both infection and populations of symbionts can be shaped by the host body temperature. However, the effects of temperature on the antiparasitic activities of gut symbionts have seldom been explored. The -rich gut microbiota of facultatively endothermic honey bees is subject to seasonal and ontogenetic changes in host temperature that could alter the effects of symbionts against parasites. We used cell cultures of a symbiont and an important trypanosomatid gut parasite of honey bees to test the potential for temperature to shape parasite-symbiont interactions. We found that symbionts showed greater heat tolerance than parasites and chemically inhibited parasite growth via production of acids. Acceleration of symbiont growth and acid production at high temperatures resulted in progressively stronger antiparasitic effects across a temperature range typical of bee colonies. Consequently, the presence of symbionts reduced both the peak growth rate and heat tolerance of parasites. Substantial changes in parasite-symbiont interactions were evident over a temperature breadth that parallels changes in diverse animals exhibiting infection-related fevers and the amplitude of circadian temperature variation typical of endothermic birds and mammals, implying the frequent potential for temperature to alter symbiont-mediated resistance to parasites in endo- and ectothermic hosts. Results suggest that the endothermic behavior of honey bees could enhance the impacts of gut symbionts on parasites, implicating thermoregulation as a reinforcer of core symbioses and possibly microbiome-mediated antiparasitic defense. IMPORTANCE Two factors that shape the resistance of animals to infection are body temperature and gut microbiota. However, temperature can also alter interactions among microbes, raising the question of whether and how temperature changes the antiparasitic effects of gut microbiota. Honey bees are agriculturally important hosts of diverse parasites and infection-mitigating gut microbes. They can also socially regulate their body temperatures to an extent unusual for an insect. We show that high temperatures found in honey bee colonies augment the ability of a gut bacterial symbiont to inhibit the growth of a common bee parasite, reducing the parasite's ability to grow at high temperatures. This suggests that fluctuations in colony and body temperatures across life stages and seasons could alter the protective value of bees' gut microbiota against parasites, and that temperature-driven changes in gut microbiota could be an underappreciated mechanism by which temperature-including endothermy and fever-alters animal infection.
温度会影响微生物群落的生长、代谢和种间相互作用。在动物宿主中,肠道共生菌可以提供对寄生虫感染的抵抗力。感染和共生体的种群都可以被宿主体温所塑造。然而,温度对肠道共生体的抗寄生虫活性的影响很少被探索。兼性恒温的蜜蜂的富含-的肠道微生物群受到宿主温度的季节性和发育变化的影响,这可能会改变共生体对寄生虫的影响。我们使用共生体和蜜蜂重要的原生动物肠道寄生虫的细胞培养物来测试温度对寄生虫-共生体相互作用的潜在影响。我们发现,共生体比寄生虫具有更高的耐热性,并且通过产生酸来抑制寄生虫的生长。在典型的蜜蜂群体温度范围内,高温加速了共生体的生长和产酸,从而导致抗寄生虫作用逐渐增强。因此,共生体的存在降低了寄生虫的最大生长速率和耐热性。在与感染相关的发热以及恒温鸟类和哺乳动物典型的昼夜温度变化幅度相似的温度范围内,寄生虫-共生体相互作用发生了实质性变化,这表明温度经常有可能改变内温动物和外温动物宿主中共生体介导的寄生虫抗性。结果表明,蜜蜂的恒温行为可以增强肠道共生体对寄生虫的影响,这意味着体温调节是核心共生关系的增强因素,并且可能是微生物组介导的抗寄生虫防御的增强因素。重要性 影响动物对感染的抵抗力的两个因素是体温和肠道微生物群。然而,温度也可以改变微生物之间的相互作用,这就提出了一个问题,即温度是否以及如何改变肠道微生物群的抗寄生虫作用。蜜蜂是各种寄生虫和感染缓解肠道微生物的重要农业宿主。它们还可以在一定程度上调节自己的体温,这在昆虫中是不寻常的。我们表明,在蜜蜂群体中发现的高温增强了肠道细菌共生体抑制常见蜜蜂寄生虫生长的能力,降低了寄生虫在高温下生长的能力。这表明,在不同的生命阶段和季节,群体和体温的波动可能会改变蜜蜂肠道微生物群对寄生虫的保护价值,并且温度驱动的肠道微生物群变化可能是一个被低估的机制,通过该机制,包括恒温在内的温度改变了动物感染。