Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712.
Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2220922120. doi: 10.1073/pnas.2220922120. Epub 2023 Jun 12.
Honey bees () are critical agricultural pollinators as well as model organisms for research on development, behavior, memory, and learning. The parasite , a common cause of honey bee colony collapse, has developed resistance to small-molecule therapeutics. An alternative long-term strategy to combat infection is therefore urgently needed, with synthetic biology offering a potential solution. Honey bees harbor specialized bacterial gut symbionts that are transmitted within hives. Previously, these have been engineered to inhibit ectoparasitic mites by expressing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut symbiont to express dsRNA targeting essential genes of via the parasite's own RNAi machinery. The engineered symbiont sharply reduced proliferation and improved bee survival following the parasite challenge. This protection was observed in both newly emerged and older forager bees. Furthermore, engineered symbionts were transmitted among cohoused bees, suggesting that introducing engineered symbionts to hives could result in colony-level protection.
蜜蜂( Apis mellifera )既是重要的农业授粉媒介,也是研究发育、行为、记忆和学习的模式生物。寄生虫 ,一种常见的蜜蜂群体崩溃的原因,已经对小分子治疗药物产生了抗药性。因此,迫切需要一种替代的长期策略来对抗 感染,合成生物学提供了一种潜在的解决方案。蜜蜂体内携带有专门的细菌肠道共生体,这些共生体在蜂群中传播。以前,这些共生体通过表达靶向重要螨虫基因的双链 RNA(dsRNA),通过激活螨虫 RNA 干扰(RNAi)途径,被工程设计用来抑制外寄生螨虫。在这项研究中,我们通过寄生虫自身的 RNAi 机制,设计了一种蜜蜂肠道共生体来表达靶向 的必需基因的 dsRNA。经过寄生虫的挑战后,这种经过工程设计的共生体明显减少了 的增殖,并提高了蜜蜂的存活率。这种保护作用在新出现的和较老的觅食蜜蜂中都观察到了。此外,经过工程设计的共生体在共栖的蜜蜂之间传播,这表明向蜂群中引入经过工程设计的共生体可能会导致群体水平的保护。