Suppr超能文献

人工智能和机器学习在心脏骤停预测和管理中的应用:全面综述。

Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review.

机构信息

Medical Research Center, Hamad Medical Corporation, Doha, Qatar.

Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.

出版信息

Curr Cardiol Rep. 2023 Nov;25(11):1391-1396. doi: 10.1007/s11886-023-01964-w. Epub 2023 Oct 4.

Abstract

PURPOSE OF REVIEW

This literature review aims to provide a comprehensive overview of the recent advances in prediction models and the deployment of AI and ML in the prediction of cardiopulmonary resuscitation (CPR) success. The objectives are to understand the role of AI and ML in healthcare, specifically in medical diagnosis, statistics, and precision medicine, and to explore their applications in predicting and managing sudden cardiac arrest outcomes, especially in the context of prehospital emergency care.

RECENT FINDINGS

The role of AI and ML in healthcare is expanding, with applications evident in medical diagnosis, statistics, and precision medicine. Deep learning is gaining prominence in radiomics and population health for disease risk prediction. There's a significant focus on the integration of AI and ML in prehospital emergency care, particularly in using ML algorithms for predicting outcomes in COVID-19 patients and enhancing the recognition of out-of-hospital cardiac arrest (OHCA). Furthermore, the combination of AI with automated external defibrillators (AEDs) shows potential in better detecting shockable rhythms during cardiac arrest incidents. AI and ML hold immense promise in revolutionizing the prediction and management of sudden cardiac arrest, hinting at improved survival rates and more efficient healthcare interventions in the future. Sudden cardiac arrest (SCA) continues to be a major global cause of death, with survival rates remaining low despite advanced first responder systems. The ongoing challenge is the prediction and prevention of SCA. However, with the rise in the adoption of AI and ML tools in clinical electrophysiology in recent times, there is optimism about addressing these challenges more effectively.

摘要

目的综述: 本篇文献综述旨在全面概述预测模型的最新进展,以及人工智能和机器学习在心肺复苏(CPR)成功预测中的应用。目标是了解人工智能和机器学习在医疗保健中的作用,特别是在医学诊断、统计学和精准医学方面,并探讨它们在预测和管理心脏骤停结局方面的应用,尤其是在院前急救环境中。

最新发现: 人工智能和机器学习在医疗保健领域的作用正在扩大,在医学诊断、统计学和精准医学方面都有明显的应用。深度学习在放射组学和人群健康方面的疾病风险预测中越来越受到关注。人们高度关注人工智能和机器学习在院前急救中的整合,特别是在使用机器学习算法预测 COVID-19 患者的结局和提高对院外心脏骤停(OHCA)的识别方面。此外,人工智能与自动体外除颤器(AED)的结合在更好地检测心脏骤停事件中的可除颤节律方面显示出潜力。人工智能和机器学习在彻底改变心脏骤停的预测和管理方面具有巨大的潜力,预示着未来生存率的提高和更高效的医疗干预。尽管有先进的第一反应者系统,心脏骤停(SCA)仍然是全球主要的死亡原因,其生存率仍然很低。当前的挑战是 SCA 的预测和预防。然而,随着人工智能和机器学习工具在临床电生理学中近年来的广泛应用,人们对更有效地应对这些挑战充满了乐观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5adc/10682172/11d692b19d60/11886_2023_1964_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验