Internal Medicine, Humanitas Clinical and Research Center, IRCCS, Humanitas Research Hospital, Humanitas University, Via A. Manzoni, 56, 20089, Rozzano, Milan, Italy.
IBM, Milan, Italy.
Sci Rep. 2023 Jul 5;13(1):10868. doi: 10.1038/s41598-023-37512-3.
Predicting clinical deterioration in COVID-19 patients remains a challenging task in the Emergency Department (ED). To address this aim, we developed an artificial neural network using textual (e.g. patient history) and tabular (e.g. laboratory values) data from ED electronic medical reports. The predicted outcomes were 30-day mortality and ICU admission. We included consecutive patients from Humanitas Research Hospital and San Raffaele Hospital in the Milan area between February 20 and May 5, 2020. We included 1296 COVID-19 patients. Textual predictors consisted of patient history, physical exam, and radiological reports. Tabular predictors included age, creatinine, C-reactive protein, hemoglobin, and platelet count. TensorFlow tabular-textual model performance indices were compared to those of models implementing only tabular data. For 30-day mortality, the combined model yielded slightly better performances than the tabular fastai and XGBoost models, with AUC 0.87 ± 0.02, F1 score 0.62 ± 0.10 and an MCC 0.52 ± 0.04 (p < 0.32). As for ICU admission, the combined model MCC was superior (p < 0.024) to the tabular models. Our results suggest that a combined textual and tabular model can effectively predict COVID-19 prognosis which may assist ED physicians in their decision-making process.
在急诊科(ED),预测 COVID-19 患者的临床恶化仍然是一项具有挑战性的任务。为了实现这一目标,我们使用 ED 电子病历中的文本(例如患者病史)和表格(例如实验室值)数据开发了一个人工神经网络。预测结果为 30 天死亡率和 ICU 入院率。我们纳入了 2020 年 2 月 20 日至 5 月 5 日米兰地区 Humanitas 研究医院和 San Raffaele 医院的连续患者。共纳入 1296 例 COVID-19 患者。文本预测因子包括患者病史、体检和放射学报告。表格预测因子包括年龄、肌酐、C 反应蛋白、血红蛋白和血小板计数。TensorFlow 表格-文本模型的性能指标与仅使用表格数据的模型进行了比较。对于 30 天死亡率,联合模型的表现略优于表格 fastai 和 XGBoost 模型,AUC 为 0.87±0.02,F1 分数为 0.62±0.10,MCC 为 0.52±0.04(p<0.32)。对于 ICU 入院率,联合模型的 MCC 优于表格模型(p<0.024)。我们的结果表明,文本和表格相结合的模型可以有效地预测 COVID-19 的预后,这可能有助于急诊科医生的决策过程。