Suppr超能文献

用于高效光电化学产氯的氧化钴包覆单晶钒酸铋光阳极

Cobalt Oxide-Coated Single Crystalline Bismuth Vanadate Photoanodes for Efficient Photoelectrochemical Chlorine Generation.

作者信息

Xi Zhaoyi, Zhou Chenyu, Kisslinger Kim, Nanayakkara Tharanga, Lu Fang, Tong Xiao, Liu Mingzhao

机构信息

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.

Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 25;15(42):49281-49288. doi: 10.1021/acsami.3c11592. Epub 2023 Oct 4.

Abstract

Bismuth vanadate (BiVO) is an outstanding photoanode material for photoelectrochemical water splitting. In this work, a series of single crystalline BiVO photoanodes are synthesized by pulsed laser deposition (PLD). Once coated with a thin layer of cobalt oxide (CoO) cocatalyst, also by PLD, the photoanodes support efficient photoelectrochemical generation of chlorine (Cl) from brine under simulated solar light. The activity of the chlorine generation reaction (ClER) is optimized when the thickness of CoO is about 3 nm, with the faradic efficiency of ClER exceeding 60%. Detailed studies show that the CoO cocatalyst layer is amorphous, uniform in thickness, and chemically robust. As such, the cocatalyst also effectively protects the underlying BiVO photoanodes against chlorine corrosion. This work provides insights into using artificial photosynthesis for byproducts that carry significant economic value while avoiding the energetically expensive oxygen evolution reactions.

摘要

钒酸铋(BiVO)是一种用于光电化学水分解的出色光阳极材料。在这项工作中,通过脉冲激光沉积(PLD)合成了一系列单晶BiVO光阳极。同样通过PLD在其表面涂覆一层薄的氧化钴(CoO)助催化剂后,这些光阳极在模拟太阳光下能够支持从盐水中高效地光电化学生成氯气(Cl)。当CoO的厚度约为3 nm时,氯气生成反应(ClER)的活性达到最佳,ClER的法拉第效率超过60%。详细研究表明,CoO助催化剂层是非晶态的,厚度均匀,且化学稳定性良好。因此,该助催化剂还能有效保护下层的BiVO光阳极免受氯气腐蚀。这项工作为利用人工光合作用生产具有重大经济价值的副产品提供了思路,同时避免了能量消耗巨大的析氧反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验