Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115, Alfara del Patriarca, Valencia, Spain.
ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain.
Comput Biol Med. 2023 Nov;166:107496. doi: 10.1016/j.compbiomed.2023.107496. Epub 2023 Sep 28.
The progressive emergence of antimicrobial resistance has become a global health problem in need of rapid solution. Research into new antimicrobial drugs is imperative. Drug repositioning, together with computational mathematical prediction models, could be a fast and efficient method of searching for new antibiotics. The aim of this study was to identify compounds with potential antimicrobial capacity against Escherichia coli from US Food and Drug Administration-approved drugs, and the similarity between known drug targets and E. coli proteins using a topological structure-activity data analysis model. This model has been shown to identify molecules with known antibiotic capacity, such as carbapenems and cephalosporins, as well as new molecules that could act as antimicrobials. Topological similarities were also found between E. coli proteins and proteins from different bacterial species such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and Salmonella Typhimurium, which could imply that the selected molecules have a broader spectrum than expected. These molecules include antitumor drugs, antihistamines, lipid-lowering agents, hypoglycemic agents, antidepressants, nucleotides, and nucleosides, among others. The results presented in this study prove the ability of computational mathematical prediction models to predict molecules with potential antimicrobial capacity and/or possible new pharmacological targets of interest in the design of new antibiotics and in the better understanding of antimicrobial resistance.
抗菌药物耐药性的逐渐出现已成为亟待解决的全球卫生问题。必须研究新的抗菌药物。药物重定位结合计算数学预测模型可能是寻找新抗生素的快速有效的方法。本研究的目的是从美国食品和药物管理局批准的药物中鉴定出对大肠杆菌具有潜在抗菌能力的化合物,以及使用拓扑结构-活性数据分析模型来确定已知药物靶标和大肠杆菌蛋白之间的相似性。该模型已被证明可以识别具有已知抗生素能力的分子,如碳青霉烯类和头孢菌素类,以及可能作为抗菌剂的新分子。还发现大肠杆菌蛋白与结核分枝杆菌、铜绿假单胞菌和鼠伤寒沙门氏菌等不同细菌的蛋白之间存在拓扑相似性,这可能意味着所选分子的作用谱比预期的更广泛。这些分子包括抗肿瘤药物、抗组胺药、降脂药、降糖药、抗抑郁药、核苷酸和核苷等。本研究的结果证明了计算数学预测模型预测具有潜在抗菌能力的分子的能力,以及/或者在设计新抗生素和更好地理解抗菌药物耐药性方面可能成为新的药理学靶标的能力。