Tarín-Pelló Antonio, Fernández-Álvarez Sara, Suay-García Beatriz, Pérez-Gracia María Teresa
Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain.
ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/San Bartolomé 55, Alfara del Patriarca, 46115 Valencia, Spain.
Molecules. 2025 May 24;30(11):2303. doi: 10.3390/molecules30112303.
Antimicrobial resistance (AMR) is one of the most significant public health threats today. The need for new antimicrobials against multidrug-resistant infections is growing. The development of computational models capable of predicting new drug-target interactions is an interesting strategy to reposition already known drugs into potential antimicrobials. The objective of this review was to compile the latest advances in the development of computational models capable of identifying drugs already registered by the Food and Drug Administration for other indications with potential capacity to be applied as antimicrobials. We present studies that apply methods such as machine learning, molecular docking, molecular dynamics and deep learning. Some of these studies have / results that demonstrate the reliability of this computational methodology in terms of the identification of effective molecules and new targets of interest in the treatment of infections. In addition, we present the methods that are under development and their future prospects in terms of the search for new antimicrobials. We highlight the need to implement these strategies in the research of effective drugs in the treatment of infectious diseases and to continue to improve the available models and approaches to gain an advantage against the rapid emergence of AMR.
抗菌药物耐药性(AMR)是当今最重大的公共卫生威胁之一。对抗多药耐药感染的新型抗菌药物的需求日益增长。开发能够预测新药 - 靶点相互作用的计算模型是一种将已上市药物重新定位为潜在抗菌药物的有趣策略。本综述的目的是汇编在开发计算模型方面的最新进展,这些模型能够识别已获美国食品药品监督管理局批准用于其他适应症、具有作为抗菌药物潜在能力的药物。我们展示了应用机器学习、分子对接、分子动力学和深度学习等方法的研究。其中一些研究的结果证明了这种计算方法在识别治疗感染的有效分子和新的感兴趣靶点方面的可靠性。此外,我们介绍了正在开发的方法及其在寻找新型抗菌药物方面的未来前景。我们强调在治疗传染病的有效药物研究中实施这些策略的必要性,并持续改进现有模型和方法,以在对抗AMR的快速出现方面取得优势。