Suppr超能文献

人工智能在静脉血栓栓塞预测中的应用:系统评价和汇总分析。

Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis.

机构信息

Division of Hematology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Eur J Haematol. 2023 Dec;111(6):951-962. doi: 10.1111/ejh.14110. Epub 2023 Oct 4.

Abstract

BACKGROUND

Accurate diagnostic and prognostic predictions of venous thromboembolism (VTE) are crucial for VTE management. Artificial intelligence (AI) enables autonomous identification of the most predictive patterns from large complex data. Although evidence regarding its performance in VTE prediction is emerging, a comprehensive analysis of performance is lacking.

AIMS

To systematically review the performance of AI in the diagnosis and prediction of VTE and compare it to clinical risk assessment models (RAMs) or logistic regression models.

METHODS

A systematic literature search was performed using PubMed, MEDLINE, EMBASE, and Web of Science from inception to April 20, 2021. Search terms included "artificial intelligence" and "venous thromboembolism." Eligible criteria were original studies evaluating AI in the prediction of VTE in adults and reporting one of the following outcomes: sensitivity, specificity, positive predictive value, negative predictive value, or area under receiver operating curve (AUC). Risks of bias were assessed using the PROBAST tool. Unpaired t-test was performed to compare the mean AUC from AI versus conventional methods (RAMs or logistic regression models).

RESULTS

A total of 20 studies were included. Number of participants ranged from 31 to 111 888. The AI-based models included artificial neural network (six studies), support vector machines (four studies), Bayesian methods (one study), super learner ensemble (one study), genetic programming (one study), unspecified machine learning models (two studies), and multiple machine learning models (five studies). Twelve studies (60%) had both training and testing cohorts. Among 14 studies (70%) where AUCs were reported, the mean AUC for AI versus conventional methods were 0.79 (95% CI: 0.74-0.85) versus 0.61 (95% CI: 0.54-0.68), respectively (p < .001). However, the good to excellent discriminative performance of AI methods is unlikely to be replicated when used in clinical practice, because most studies had high risk of bias due to missing data handling and outcome determination.

CONCLUSION

The use of AI appears to improve the accuracy of diagnostic and prognostic prediction of VTE over conventional risk models; however, there was a high risk of bias observed across studies. Future studies should focus on transparent reporting, external validation, and clinical application of these models.

摘要

背景

准确诊断和预测静脉血栓栓塞症(VTE)对于 VTE 的管理至关重要。人工智能(AI)可以自主识别来自大型复杂数据的最具预测性的模式。尽管关于其在 VTE 预测中的性能的证据正在出现,但缺乏对其性能的全面分析。

目的

系统地综述 AI 在 VTE 诊断和预测中的性能,并将其与临床风险评估模型(RAM)或逻辑回归模型进行比较。

方法

从建库至 2021 年 4 月 20 日,通过 PubMed、MEDLINE、EMBASE 和 Web of Science 进行系统文献检索。检索词包括“人工智能”和“静脉血栓栓塞症”。合格标准为评估 AI 预测成人 VTE 并报告以下结果之一的原始研究:敏感性、特异性、阳性预测值、阴性预测值或受试者工作特征曲线下面积(AUC)。使用 PROBAST 工具评估偏倚风险。采用配对 t 检验比较 AI 与传统方法(RAM 或逻辑回归模型)的平均 AUC。

结果

共纳入 20 项研究。参与者人数从 31 人至 111888 人不等。基于 AI 的模型包括人工神经网络(6 项研究)、支持向量机(4 项研究)、贝叶斯方法(1 项研究)、超级学习者集成(1 项研究)、遗传编程(1 项研究)、未指定的机器学习模型(2 项研究)和多种机器学习模型(5 项研究)。12 项研究(60%)具有训练和测试队列。在报告 AUC 的 14 项研究中(70%),AI 与传统方法的平均 AUC 分别为 0.79(95%CI:0.74-0.85)和 0.61(95%CI:0.54-0.68)(p<0.001)。然而,由于数据缺失处理和结果确定方面的高偏倚风险,AI 方法的良好至优秀的判别性能不太可能在临床实践中得到复制。

结论

与传统风险模型相比,AI 的使用似乎可以提高 VTE 的诊断和预后预测的准确性;然而,观察到研究之间存在较高的偏倚风险。未来的研究应侧重于这些模型的透明报告、外部验证和临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d824/10900245/e4d61b16855b/nihms-1946609-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验