Suppr超能文献

双排序:使用运行中的神经网络进行在线尖峰排序。

DualSort: online spike sorting with a running neural network.

机构信息

Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany.

Department of Biomedical Engineering, University of Duhok, Kurdistan Region, Iraq.

出版信息

J Neural Eng. 2023 Oct 5;20(5). doi: 10.1088/1741-2552/acfb3a.

Abstract

Spike sorting, i.e. the detection and separation of measured action potentials from different extracellularly recorded neurons, remains one of the bottlenecks in deciphering the brain. In recent years, the application of neural networks (NNs) for spike sorting has garnered significant attention. Most methods focus on specific sub-problems within the conventional spike sorting pipeline, such as spike detection or feature extraction, and attempt to solve them with complex network architectures. This paper presents DualSort, a simple NN that gets combined with downstream post-processing for real-time spike sorting. It shows high efficiency, low complexity, and requires a comparatively small amount of human interaction.Synthetic and experimentally obtained extracellular single-channel recordings were utilized to train and evaluate the proposed NN. For training, spike waveforms were labeled with respect to their associated neuron and position in the signal, allowing the detection and categorization of spikes in unison. DualSort classifies a single spike multiple times in succession, as it runs over the signal in a step-by-step manner and uses a post-processing algorithm that transmits the network output into spike trainsWith the used datasets, DualSort was able to detect and distinguish different spike waveforms and separate them from background activity. The post-processing algorithm significantly strengthened the overall performance of the model, making the system more robust as a whole. Although DualSort is an end-to-end solution that efficiently transforms filtered signals into spike trains, it competes with contemporary state-of-the-art technologies that exclusively target single sub-problems in the conventional spike sorting pipeline.This work demonstrates that even under high noise levels, complex NNs are not necessary by any means to achieve high performance in spike detection and sorting. The utilization of data augmentation on a limited quantity of spikes could substantially decrease hand-labeling compared to other studies. Furthermore, the proposed framework can be utilized without human interaction when combined with an unsupervised technique that provides pseudo labels for DualSort. Due to the low complexity of our network, it works efficiently and enables real-time processing on basic hardware. The proposed approach is not limited to spike sorting, as it may also be used to process different signals, such as electroencephalogram (EEG), which needs to be investigated in future research.

摘要

尖峰分类,即从不同的细胞外记录神经元中检测和分离测量的动作电位,仍然是破译大脑的瓶颈之一。近年来,神经网络(NN)在尖峰分类中的应用引起了广泛关注。大多数方法都集中在传统尖峰分类管道中的特定子问题上,例如尖峰检测或特征提取,并尝试使用复杂的网络架构来解决这些问题。本文提出了 DualSort,这是一种简单的神经网络,与下游后处理相结合,用于实时尖峰分类。它显示了高效率、低复杂性,并且需要相对较少的人工交互。

使用合成和实验获得的细胞外单通道记录来训练和评估所提出的神经网络。对于训练,根据与神经元及其在信号中的位置相关的标签对尖峰波形进行标记,从而可以同时检测和分类尖峰。DualSort 以连续的方式多次对单个尖峰进行分类,因为它以逐步的方式在信号上运行,并使用后处理算法将网络输出转换为尖峰序列。

使用所使用的数据集,DualSort 能够检测和区分不同的尖峰波形,并将它们与背景活动分开。后处理算法显著增强了模型的整体性能,使整个系统更加稳健。尽管 DualSort 是一种端到端的解决方案,可将过滤后的信号高效地转换为尖峰序列,但它与专门针对传统尖峰分类管道中单个子问题的当代最先进技术竞争。

这项工作表明,即使在高噪声水平下,复杂的神经网络也绝不是实现尖峰检测和分类高性能的必要条件。与其他研究相比,在有限数量的尖峰上利用数据增强可以大大减少手动标记。此外,当与为 DualSort 提供伪标签的无监督技术结合使用时,可以在无需人工交互的情况下使用所提出的框架。由于我们的网络复杂度低,因此它可以在基本硬件上高效运行,并实现实时处理。所提出的方法不仅限于尖峰分类,因为它也可用于处理不同的信号,例如脑电图(EEG),这需要在未来的研究中进行调查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验