Moscow Center for Diagnostics and Telemedicine, Moscow, Russia.
National Research University "Moscow Power Engineering Institute", Moscow, Russia.
Phys Eng Sci Med. 2023 Dec;46(4):1765-1778. doi: 10.1007/s13246-023-01338-0. Epub 2023 Oct 5.
The paper addresses a crucial challenge in medical radiology and introduces a novel general approach, which utilises applied mathematics and information technology techniques, for aberration correction in ultrasound diagnostics. Ultrasound imaging of inhomogeneous media inherently suffers from variations in ultrasonic speed between tissue. The characteristics of aberrations are unique to each patient due to tissue morphology. This study proposes a new phase aberration correction method based on the Fourier transform and leveraging of the synthetic aperture mode. The proposed method enables correction after the emission and reception of ultrasonic wave, allowing for the estimation of aberration profiles for different parts of the sonogram. To demonstrate the method's performance, this study included the conducting of experiments using a commercially available quality control phantom, an ex-vivo temporal human bone, and specially designed distortion layers. At a frequency of 2 MHz, the experiments demonstrated an increase of two-and-three-quarters in echo signal intensity and a decrease of nearly two-fold in the width of the angular distribution compared to the pre-correction state. However, it is important to note that the implementation of the method has a limitation, as it requires an aperture synthesis mode and access to raw RF data, which restricts use in common scanners. To ensure the reproducibility of the results, this paper provides public access to an in-house C + + code for aberration correction following the proposed method, as well as the dataset used in this study.
本文针对医学放射学中的一个关键挑战,提出了一种新的通用方法,该方法利用应用数学和信息技术技术,对超声诊断中的像差进行校正。不均匀介质的超声成像是固有地受到组织中超声速度变化的影响。由于组织形态的原因,每个患者的像差特征都是独特的。本研究提出了一种新的基于傅里叶变换和合成孔径模式的相位像差校正方法。该方法可以在发射和接收超声波后进行校正,从而可以估计声图不同部分的像差轮廓。为了展示该方法的性能,本研究使用商业可得的质量控制体模、离体人骨和专门设计的失真层进行了实验。在 2MHz 的频率下,实验结果表明,与校正前相比,回波信号强度增加了四分之三,角分布的宽度减小了近两倍。然而,需要注意的是,该方法的实现存在局限性,因为它需要孔径合成模式和原始 RF 数据的访问,这限制了其在普通扫描仪中的使用。为了确保结果的可重复性,本文提供了一个内部 C++代码,用于根据所提出的方法进行像差校正,以及本研究中使用的数据集。